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A true random number generator (TRNG) is an important component in cryptographic systems. Designing a fast and secure
TRNG in an FPGA is a challenging task. In this paper, we analyze the TRNG designed by Sunar et al. (2007) based on XOR of the
outputs of several oscillator rings. We propose an enhanced TRNG with better randomness characteristics that does not require
postprocessing and passes the statistical tests. We have shown by experiment that the frequencies of the equal length oscillator
rings in the TRNG are not identical. The difference is due to the placement of the inverters in the FPGA and the resulting routing
between the inverters. We have implemented our proposed TRNG in an Altera Cyclone II FPGA. Our implementation has passed
the NIST and DIEHARD statistical tests with a throughput of 100 Mbps and with a usage of less than 100 logic elements in the
FPGA. The restart experiments have shown that the output from our TRNG behaves truly random and not pseudorandom.

Copyright © 2009 K. Wold and C. H. Tan. This is an open access article distributed under the Creative Commons Attribution
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1. Introduction

Traditionally, a high assurance implementation of crypto-
graphic algorithms has been done in application specific
integrated circuit (ASIC). During the recent years, more
and more of these implementations are done in field
programmable gate array (FPGA). There are several reasons
for this development. The FPGA can be reprogrammed,
leading to more flexibility for modification of algorithms,
changing algorithms, and fixing bugs. The development of
an algorithm in an FPGA is easier and faster as compared
to an ASIC design, resulting in a shorter time-to-market. In
addition, the latest FPGA devices are manufactured with the
state-of-the-art technology.

It is well known that a true random number gen-
erator (TRNG) is an important component of today’s
cryptographic systems. Typically a TRNG can be used for
generating keys, initialization vectors, random sequences for
cryptographic challenges-responses, and so forth. In a cryp-
tographic system, a private or secret parameter is normally
generated by a TRNG and is an interesting property to an
attacker. Therefore, the generation of a random bit sequence
is important and should be unpredictable to an attacker. One

common method for generating a truly random sequence is
to amplify the thermal noise in a diode [1]. The disadvantage
of this method is the use of external components. This
approach enables an attacker to manipulate and read the
random bit sequence from the device and consequently
violate the security of the entire cryptographic system. If
the TRNG is implemented entirely inside the FPGA, an
attacker will have difficulties in retrieving and manipulating
the random bit sequence. The challenge is to design a TRNG
in an FPGA passing all statistical tests and at the same time
using as few resources as possible and achieving a high
throughput of random bits.

In this paper, we examine more closely the TRNG based
on oscillator rings proposed by Sunar et al. [2]. We show
that the TRNG described in [2] is not random without
postprocessing. We propose an enhancement of the proposal
from [2] and experimentally show improved performance
with respect to FPGA resource usage and throughput. We
also show that our TRNG has no bias and, therefore, no
need for complicated postprocessing. We experimentally
demonstrate that the frequencies of the oscillator rings are
different due to the placement and routing of the inverters
inside the FPGA.



We have implemented our proposal in an Altera Cyclone
IT FPGA [3]. Our implementation of the TRNG based on
oscillator rings passes the NIST and DIEHARD statistical
tests with a throughput of 100 Mbps and the usage of less
than 100 logic elements in the FPGA. Repeated restarts
of the TRNG from the same reset state have shown that
the output of our random generator behaves truly random
and not pseudorandom. The standard deviation has been
calculated from 1000 traces recorded after reset. A short
startup period should be omitted in order to obtain good
quality of the randomness, but after the TRNG output
stabilizes, the standard deviation becomes constant and in
accordance with the theoretical values.

The rest of this paper is organized as follows: in Section 2,
we briefly examine the previous work on TRNG in FPGA.
In Section 3, we analyse the TRNG of [2]. In Section 4, we
propose an enhancement of the TRNG to achieve better
randomness on the output sequence. The analysis of the
randomness of our proposed TRNG and the investigation of
distribution of frequencies on oscillator rings are discussed
in Sections 5 and 6, respectively. In Section 7, we describe
in detail an implementation of our proposed TRNG. In
Section 8, we investigate the behavior of our TRNG after
repeated restarts from known reset state, and finally we make
a conclusion in Section 9.

2. Related Work

Several implementations of TRNG in FPGA have been
proposed during the recent years. The common entropy
source used is jitter on clock signals. Jitter can be viewed
as timing deviation from the theoretically correct position
due to electronic or thermal noise [4]. The random jitter
will typically follow a Gaussian distribution characterized
by a certain standard deviation (o). Usually, jitter is an
unwanted property in a system, but this behavior is useful
when generating random signals in a TRNG.

In 2002, Fischer et al. [5] used the jitter in analogue
phase-locked loop (PLL) in FPGAs from Altera as entropy
source in a TRNG. The strategy was to create different clock
signals with jitter from the PLL and sample one of the clock
signals with the other. This method is restricted to FPGAs
containing such analogue components. Later, Kohlbrenner
and Gaj [6] used a similar technique, but the clocks are
generated by oscillator rings containing two transparent
latches, a buffer and an inverter. Since the frequencies of the
two oscillator rings have to be almost equal, the oscillator
rings have to be correctly matched. Tkacik [7] proposed
a TRNG using a linear feedback shift register (LFSR) and
a cellular automaton shift register (CASR) clocked by two
independent oscillator rings. Selected outputs from the LESR
and CASR are combined by an XOR generating the final
random signal. The disadvantage of this scheme is that the
TRNG has memory and is, therefore, not stateless as pointed
out in [8]. In 2006, Goli¢ [9] proposed a TRNG using a
Galois ring oscillator (GARO) and a Fibonacci ring oscillator
(FIRO). These LFSR-like structures use inverters as delay
elements instead of register elements. The outputs from one
GARO and one FIRO are combined by means of an XOR
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FiGure 1: TRNG based on oscillator rings [2].
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and the random sequence is generated by sampling with a
D flip-flop. This design was further investigated by Dichtl
and Goli¢ [10]. The output signal from these FIRO/GARO
structures has a noisy analogue behavior, making them more
susceptible to cross-talk from other signals inside the FPGA
than ordinary digital signals. In 2007, Sunar et al. [2] gave a
theoretical proposal of a TRNG based on several equal length
oscillator rings made up of an odd number of inverters (see
Figure 1). The outputs from the oscillator rings are XORed
together and sampled with a D flip-flop. To compensate for
the imbalance between the number of zeros and ones in
the random signal, a postprocessing stage is present on the
output of the D flip-flop. Schellekens et al. [11] implemented
this scheme in a Xilinx FPGA, but with a large number of
rings in order to make the random sequence output pass
the statistical tests. In 2008, Vasyltsov et al. [12] proposed a
TRNG based on a 5-stage metastable ring oscillator, where
each stage contains only one inverter. The result is a fast and
small implementation of a TRNG in an FPGA or ASIC, but
optimization in the synthesis process causes difficulties in the
FPGA implementation. Recently, Danger et al. [13] proposed
a fast TRNG based on creating metastability in open loop
structures in FPGAs.

3. TRNG Based on Oscillator Rings

Since our proposed enhancement is based on the TRNG of
Sunar et al. [2], we take a closer look on the design from
[2], see Figure 1. The TRNG consists of several equal length
oscillator rings connected to an XOR tree. The output from
the XOR tree is sampled by a D flip-flop, and the output
signal of the D flip-flop is then postprocessed in order to
increase the entropy and remove bias from the random
signal. The proposed postprocessing in [2] is a resilient
function implemented as a BCH-code. The suggested design
of the TRNG consists of 114 oscillator rings where each ring
consists of 13 inverters. The suggested sampling frequency is
40 MHz and the postprocessing is a [ 256, 16, 113] extended
BCH code. The resulting throughput of the TRNG in [2] is
2.5 Mbps.

The entropy source of the TRNG is the jitter created by
each oscillator ring. The jitter has a Gaussian distribution
around each clock transition between logic low and logic
high level. This jitter will create an accumulated phase drift
in each ring so that the transitions will be at different times
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FIGURE 2: Our proposal.
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in the sampling period. Due to the jitter, the unpredictable
transition region is assumed to be uniformly distributed in
the sampling period. The number of rings needed can then
be calculated based on the coupon collector’s problem, that
is, the number of uniform random selections of N urns such
that all urns are selected at least once. The number of urns
is determined by the proportion of the jitter size compared
to the frequency of the oscillator ring. Because the number
of rings grows exponentially when filling up the last urns, a
lower fill rate than 100% is selected. To compensate for this, a
BCH-code is used for postprocessing. The resulting random
number throughput is reduced by a factor of 16 due to this
postprocessing scheme.

In [10], some weaknesses of this implementation were
mentioned. The main concern of the authors of [10] is that
the XOR-tree and the sampling D flip-flop cannot handle
the high number of transitions from the oscillator rings. The
frequency of an oscillator ring is approximately the same or
higher than the sampling frequency. With many oscillator
rings in parallel, the number of transitions during a sampling
period will be so high that the setup- and hold-times for the
lookup table (LUT) and the internal register element in the
FPGA will be shorter than specified for the device.

The analysis of the TRNG from [2] is shown in Sections
5 and 6 as it is better to present a comparison with the
proposed enhanced TRNG.

4. Our Proposed Enhancement

To cope with the problem with many transitions in the
sampling period, we suggest an enhancement of the TRNG
based on the oscillator rings in [2] by adding an extra D
flip-flop after each ring (Figure 2). As we will show, this
configuration will improve the randomness of the TRNG.
The randomness of the configuration relies on the jitter
variations of the oscillator rings. Adding these extra flip-flops
will not alter the collection of the randomness of each ring,
but improve the overall randomness at the output.

The frequency of the oscillator ring ( f;) is dependent on
the odd number of inverters in the ring. The frequency will
increase with the decreasing number of inverters. In order to
have a fast and small TRNG, the number of inverters should
be as low as possible making the frequency of the rings
become high as compared to the sampling frequency (f;).

250 f
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FIGURE 3: Beat frequency.

The advantage of our enhancement is that the signals on the
input of the XOR will now be synchronous with the sampling
clock and only updated once in the sampling period. Due to
this reduction in transitions on the input to the XOR tree, the
setup- and hold-times for the internal logic in the FPGA will
now be within acceptable limits.

The frequency of the beat signal ( f;) after the extra flip-
flop will always be less than half of the sampling frequency
and lie in the interval [0, f;/2] (Figure 3). The sampling
frequency f; should be chosen such that the beat frequency
fp at the input of the XOR is as high as possible, and avoid
the frequency of the oscillator rings be a multiple of the
sampling frequency resulting in a beat frequency near zero
or no transitions (in the worts case) in the beat signal.

The result of adding the extra D flip-flop, is that the
switching activity on the input to the XOR-tree is signifi-
cantly reduced. The XOR calculation becomes deterministic
while the randomness is collected by the sampling of the
free running oscillator rings. The sampling of a free running
oscillator ring could lead to metastability in the flip-flop
causing the output of the flip-flop neither to be logic low
or logic high for a short time period. This phenomenon can
arise when a transition occurs during the setup and hold-
time of the flip-flop, which is the case for the extra D flip-
flops in our proposed TRNG. To avoid the metastable state
to propagate into the XOR tree, the output of the oscillator
ring could be sampled by one additional D flip-flop.

If a large number of rings is needed, the logic of the
XOR tree will be deep and contain many logic levels. The
result could be violating the timing inside the FPGA because
the time delay through the XOR tree is longer than the
sampling period. In this case, one or more register levels
can be inserted into the XOR tree. This will not affect the
throughput, but it will increase the latency of the TRNG
output and increase the resources used in the FPGA.

5. Bias in TRNG

One of the basic statistical tests of random number gener-
ators is the frequency test of ones and zeros. For a good
random bit sequence the probability of a zero or a one should



be equal to 1/2. In other words, there should be no bias in the
random bit sequence.

Let X and Y be two random bit sources with expected
values E(X) = E(Y) = u, respectively, and let p be their
correlation. Then the expected value of the XOR of the two
sequences (X @ Y) is given by (see e.g., [14]).

2
E(X@Y):%—z@—%) —2pu(1 = p). (1)

If 4 is close to 1/2, (1) can be written as
1
E(X@Y):E(l—p). (2)

It can be seen that correlation between the two sequences
will generate bias in the output from the XOR of two random
bit sequences. If X and Y are linearly independent, thenp = 0
andEXo®Y) = 1/2.

If there are n independent bits, each with expected value
U, then the expected value of XOR of all these bits will be
given by

%+(—2)"*1(y—%>n - %(1+(—2£)"), (3)

where e = p — 1/2. Since p € (0,1) = |2¢| < 1, the expected
value in (3) will converge to 1/2 for increasing number of
sequences, 1. In other words, adding more oscillator rings
in the TRNG design should improve the bias if the rings are
independent.

We have carried out some experiments on the random-
ness of the TRNG in [2] (without any postprocessing) and
our proposal in Figure 2. The experiments are carried out
on a Starter Development Board from Altera containing a
Cyclone IT FPGA. This device has a core voltage of 1.2V and
is fabricated in 90 nm technology. Quartus II WebEdition
6.1 is used for synthesis and Place and Route (P&R). The
sequences of random bits generated inside the FPGA are
stored in an external SRAM and transmitted to a PC for
analysis through an asynchronous serial connection. The
result is a number of blocks of subsequent random number
bits from the TRNG where each block has a maximum size
of 4 Mbit. The sampling frequency used in this experiment
is 50 MHz. No constrains have been put on the P&R tool
regarding the placement of the inverters in the FPGA.

We have implemented the two configurations of TRNG
(Figures 1 and 2), recorded 10 blocks of 1 Mbit of random
data from each configuration, and determined the frequency
of ones in all blocks. We have performed the experiment
with oscillator rings of lengths 3 and 13, and with varying
number of rings. The results are shown in Figure 4. They
indicate that the design in [2] has a bias after the XOR of
the oscillator rings. The tendency is that the bias increases
with the increasing number of rings and there is a majority
of zeros in the output. Comparing these observations against
(1)—(3) shows that there is some dependency or correlation
in the random sequences creating a bias. It seems that
this bias is due to the problem with the high number of
transitions at the input of the XOR tree and the sampling
flip-flop. For our configuration (Figure 2), it is seen that
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the expected value is close to 1/2 for increasing number of
oscillator rings. Figure 5 shows a closer view of the curves,
where the absolute value of the bias from the ideal 0.5 level
is shown for our configuration with 3 and 13 inverters in the
oscillator rings. It is seen that the bias converges to 0, and
that our enhanced TRNG behaves according to the theory of
XOR of independent random sequences.

6. Distribution of Ring Frequencies

According to [2], the assumption of randomness is that the
equal length oscillator rings will have the same frequency
while the phase drift related to the jitter causes the drifting
of the transition regions. We believe that the frequencies of
the oscillator rings will be different from each other. We have
carried out an experiment where we have implemented 64
oscillator rings in the Altera Cyclone II FPGA and tapped out
the signal from each of these rings to I/O-pins on the FPGA.
These frequencies were measured with an oscilloscope.
Figure 6 shows the histograms of the frequencies of
oscillator rings with 5 and 31 inverters, respectively. (For
oscillator rings with 3 inverters, the measured signals are
outside the specification of the 1/O-pins for our Cyclone
II FPGA (maximum frequency of 300 MHz). However, the
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frequencies are measurable and the measurements with 3
inverters gave a similar histogram as shown in Figure 6 with
5 inverters.) From this experiment, it is observed that the
distribution of the frequencies for short rings does not follow
a Gaussian distribution and the frequencies are clustered in
groups. For longer rings, the clustering is not so obvious
and the distribution is approaching Gaussian with only some
values far from the mean.

When examining similar histograms for other lengths, it
is observed that the dispersion is decreasing with increasing
number of inverters. In Figure 7, the dispersion is measured
by the coefficient of variation defined as the percentage
of o/u, where ¢ is the standard deviation and y is the
mean of the measured frequencies. It can be seen that the
dispersion is high for short rings and decreasing with longer
oscillator rings. Based on this observation, using oscillator
rings with only 3 inverters will give the highest dispersion in
the frequencies.

To explain the behavior of the frequency distribution,
the architecture of the Altera Cyclone II FPGA [3] has to
be examined. This FPGA consists of a matrix with logic
elements (LEs), each containing a programmable register
and an LUT for implementing any logic function of four
inputs. 16 of these LEs are then grouped into a logic array
block (LAB). All the LEs and LABs are connected together
via different routing resources depending on the distance

between them inside the FPGA. When running P&R for the
design in an FPGA, the inverters in the oscillator rings are
located at physical LEs. Depending on the placement, the
routing delay between the LEs will differ. If all the inverters
are placed in LEs inside one LAB, the routing delay will be
short. If the inverters are placed in LEs in different LABs,
the routing delay will be increased resulting in a lower
frequency of the oscillator ring. In addition, there will also
be a variation in the delay of each LUT, typically following
a Gaussian distribution. All these variations in the routing
delays cause the distribution of the oscillator ring frequencies
and the clustering for short rings. For short oscillator rings,
the inverters of some of the rings are placed in the same
LAB, but for some of the other rings, the inverters are placed
in two or more LABs, resulting in routing delays with large
variations. For long oscillator rings, the difference between
the routing delays of each ring will be smaller due to the
fact that the inverters have to be placed in more than one
LAB. From Figure 7, this can be seen indirectly. For small
number of inverters, the dispersion is high, and decreasing
until the rings contains more than 16 inverters and therefore
filling up more than one LAB. For more than 16 inverters, the
dispersion is constant, indicating that the variation is only
due to the natural timing variation between the difference
logic elements in the FPGA. For other FPGAs with similar
architecture, the oscillator ring frequencies will result in
similar distributions.

Due to the observed distribution of frequencies of equal
length oscillator rings, the transition regions will quickly
be spread out over the sampling time period, much faster
than if only the accumulation of the oscillator ring jitter
was contributing. In order to examine the effect of this
frequency distribution on the randomness, we carried out
an experiment where a model of the TRNG was made in
MATLAB without involving the jitter in the generation of the
output sequence. 100 blocks of 1 Mbit each were recorded,
and for each block a new set of oscillator ring frequencies was
generated from a Gaussian distribution (same as generating
one block of data from 100 different TRNGs). The resulting
output sequence was tested by the NIST randomness test
suite [15], and it showed that with 50 or more oscillator rings
in the MATLAB TRNG model, the quality of the generated
random sequences was good enough to pass the NIST
test suite. This experiment shows that a TRNG combining
several equal length oscillator rings outputs where there is a
dispersion between the frequencies, generates bit sequences
that have good qualities even though they are deterministic.
The jitter introduced in the oscillator rings contributes with
the unpredictable behavior that is necessary to have a true
random source.

7. TRNG Implementation

We have implemented our proposed TRNG from Figure 2.
In order to have a fast and small TRNG, the number of
inverters in the oscillator ring is selected to be 3. A sampling
frequency of 100 MHz is selected, resulting in a throughput
of 100 Mbps since our TRNG does not use any postprocess-
ing. In most of real TRNG designs in cryptographic systems,
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using postprocessing is recommended in order to improve
the randomness by increasing the entropy and removing bias.
But, for our TRNG, a postprocessing is not needed to pass the
statistical tests, and, therefore, an additional post-processor
can be of a simple type like an XOR of two subsequent bits or
a von Neumann corrector.

The required number of rings is estimated based on the
probability to hit the transition region with the sampling.
Sunar et al. [2] computed this by using a combinatorial
approach (coupon collector’s problem). An alternative way
is to make a statistical model of the TRNG and perform
simulations in order to decide how many oscillator rings
are needed to achieve a high probability such that at least
one ring is sampled in the transition region. When the size
of the jitter is small compared to the sampling period, the
simulations show that the number of rings in the transition
region follows a Poisson distribution with a parameter A =
k - r where r is the number of rings and k is a constant
depending on the size of the jitter compared to the sampling
period. The probability of sampling in at least one of the
transition regions versus the number of rings is shown in
Figure 8. It shows that the probability increases rapidly for
small number of rings, but many oscillator rings are needed
to get a 100% certainty.

We have carried out an experiment where we have used
50 oscillator rings with 3 inverters, a sampling frequency of
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TaBLE 1: Resources used in the Altera FPGA.

Oscillator rings LUT only LEs ~ LUT/Register LEs ~ Total LEs
25 57 26 83
50 116 51 167

100 MHz and no postprocessing. A total of 1000 blocks of
1 Mbit (a total of 1 Gbit) of random data have been captured
from the TRNG. The data was tested by using the statistical
tests of NIST (SP 800-22) [15] and DIEHARD [16]. The
random data passed both tests. We also performed the same
experiment with only 25 oscillator rings. The random data
also passed both the NIST and the DIEHARD tests (Figures 9
and 10). From these figures it can be observed that the sorted
P-values from the tests follow the ideal diagonal line. These
experiments indicate that it is probably not necessary to have
almost 100% certainty to hit at least one transition region in
order to pass the NIST and DIEHARD statistical tests for this
kind of TRNG.

Table 1 shows the amount of resources used for our
TRNG in the Altera Cyclone II FPGA. For 25 oscillator rings,
the number of LEs is less than 100 (<1% of the total number
of LEs in our medium size FPGA). For comparison, the
original design in [2] occupies more than 1800 LEs.

A TRNG design based on several oscillator rings is robust
because the placement of the inverters inside the FPGA is not
critical and no constraints on the P&R tool are necessary. As
the experiments show, having different delays of the inverter
chains contributes to the quality of randomness. However,
if there are interactions between the oscillator rings making
the rings oscillate with the same frequency and phase, the
output bit sequence will naturally not be random. We have
not seen any sign of interaction between the oscillator rings
in our experiments.

All the tests were performed at the room temperature.
The effect of varying the temperature is beyond the scope
of this study, but in general, changing the temperature
will influence the oscillator ring frequencies. An increase
in temperature will decrease the oscillator ring frequencies
and vice versa. But since all the rings will be influenced in
the same manner, there will be a shift in all the frequencies
and the dispersion between the frequencies will remain
approximately unchanged.
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8. Restart Experiment

In order to examine the randomness of our TRNG after
startup, an oscilloscope was used to capture the random
output when restarting the TRNG several times from the
same reset state. While the reset is active, the oscillator ring
outputs are kept at zero or low level. When the reset is
deactivated, the oscillator rings start to oscillate. In Figures
11 and 10 restart sequences from the output of the TRNG
are captured where the oscilloscope is triggered on a clocked
version of the reset signal at the origin of the graph. The
sampling frequency is 50 MHz. Because of the bandwidth
limitation in the oscilloscope, the measured outputs are not
square signals. It can be seen that all the outputs start at zero,
but there is a deviation after the first clock period of 20 ns.
This experiment shows that our TRNG outputs randomness
quickly after a restart. The experiment also shows that since
the traces are deviating from each other, the output contains
true randomness and not pseudorandomness. If the random
signal had been only pseudorandom, the restart experiment
should have given equal traces when repeatedly starting the
TRNG from the same reset state.

The restart experiment was expanded to capture 1000
restarts. The standard deviation for all these traces was
calculated and is shown in Figure 12 for a sampling frequency
of 10 MHz. The form of the curve is very regular because
all the traces are aligned with the sampling frequency, and

Voltage (V)

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Time (us)

FiGure 13: Standard deviation of 1000 traces, sampling frequency
100 MHz and 25 rings.

because the random signal is digital with voltage level of
either +3.3V or 0V. Theoretically, the standard deviation
can be calculated by looking at the probability of a voltage
level of logic zero and logic one, and the probability of a
transition between the two logic levels. A good random signal
should have equal probability of zeros and ones, and also
equal probability of a transition or no transition. The mean
value of the voltage with these conditions, is then = 1.65 V.
The standard deviation can then be calculated for the two
cases: (1) the signal is in the middle of the sampling period,
and (2) the signal is at the sampling point. For case (1),
the standard deviation is 0 = 1.65V, and for case (2) the
standard deviation is ¢ = 1.17 V. From Figure 12 we can see
that the theoretical values match the measured data when
the starting period is omitted. It is also observed that the
standard deviation is stable after a short startup period.

Figure 13 shows the standard deviation with a sampling
frequency of 100 MHz. Due to the band limitation of the
oscilloscope, the values of the standard deviation differ from
the theoretical values. It is observed that in a short startup
period, the quality of the randomness is not optimal because
the standard deviation is not stabilized. From Figures 12 and
13, it is seen that this startup period is constant regarding the
sampling frequency or the throughput bit-rate. For the case
of a TRNG with 25 oscillator rings with 3 inverters in each
ring, this startup time is about 300ns. This indicates that the
first data bits should be omitted in order to have good quality
of the random sequence.

9. Conclusion

We have analyzed the TRNG in [2] and have proposed an
enhancement of a TRNG based on oscillator rings. By adding
an extra flip-flop after each inverter ring before the XOR tree,
we have shown that the performance is much better than [2]
regarding the random signal. We have also shown that the
frequencies of each ring are not equal but have some kind
of distribution. Smaller rings will have higher dispersion in
the distribution and therefore also better potential for fast
generation of randomness after restart.



We have implemented the TRNG from Figure 2 and
carried out statistical tests on the resulting random bit
sequences. We have shown that our TRNG passes both
the NIST and DIEHARD tests without postprocessing. The
throughput of the TRNG is 100 Mbps and the resources used
in the FPGA are less than 100 logic elements in an Altera
Cyclone I FPGA.

The restart experiments show that the output of the
TRNG behaves truly random and not pseudorandom since
the traces differ when restarted from the same reset state.
These experiments also show that the standard deviation of
the traces is in accordance with the theory, and that it is stable
after a short startup period. Due to this startup period, the
first bits should be omitted in order to have good quality of
the randomness.
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