Vis enkel innførsel

dc.contributor.authorDirdal, Johann Alexander
dc.contributor.authorSkjetne, Roger
dc.contributor.authorRoháč, Jan
dc.contributor.authorFossen, Thor I.
dc.date.accessioned2024-04-30T07:27:22Z
dc.date.available2024-04-30T07:27:22Z
dc.date.created2023-11-03T10:25:14Z
dc.date.issued2023
dc.identifier.citationOcean Engineering. 2023, 288 .en_US
dc.identifier.issn0029-8018
dc.identifier.urihttps://hdl.handle.net/11250/3128550
dc.description.abstractThis study investigates the potential capability of a relatively new and unexplored signal-based approach for shipboard wave estimation. The approach uses the phase-time-path-differences (PTPDs) from an array of shipboard sensors to uniquely resolve the wave propagation direction and wave number. We derive a kinematic PTPD model accounting for forward vessel speed and assess its theoretical foundation to model the sensor delays on a rigid body. The forward-speed PTPD model is structurally equivalent to the zero-speed model considered in previous works, thus retaining the same observability results provided by a noncollinear array of a minimum of three sensors. Moreover, based on the outlined theory and PTPD model, we propose a methodology to estimate the main wave propagation direction and wave number online by employing a fast Fourier transform (FFT), an unscented Kalman filter (UKF), and a rigid-body measurement transformation based on a single inertial measurement unit (IMU). Provided that the vessel in question can be considered a rigid body, a single IMU is sufficient to obtain the desired wave quantities instead of three IMUs, as initially proposed in our previous work. Additionally, our methodology incorporates a novel frequency threshold to avoid distorted wave components caused by the effect of vessel filtering. The performance of our PTPD method is evaluated on data collected from a wave tank and full-scale experiments involving a vessel with zero and non-zero forward speed. The results show very good agreement with the reference wave values reported from a commercial wave radar and wave buoys operating in proximity to the vessel, indicating that our proposed method is competitive with existing wave measurement technology in terms of accuracy and online performance while being cheap, easy to install, flexible, and robust against environmental influences.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0029801823025155
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectMarin kybernetikken_US
dc.subjectMarine cyberneticsen_US
dc.subjectDynamisk Posisjoneringen_US
dc.subjectDynamic Positioningen_US
dc.subjectAutonome skipen_US
dc.subjectAutonomous shipsen_US
dc.titleA phase-time-path-difference approach for online wave direction and wave number estimation from measured ship motions in zero and forward speed using a single inertial measurement uniten_US
dc.title.alternativeA phase-time-path-difference approach for online wave direction and wave number estimation from measured ship motions in zero and forward speed using a single inertial measurement uniten_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Skipsteknologi: 582en_US
dc.subject.nsiVDP::Ship technology: 582en_US
dc.source.pagenumber25en_US
dc.source.volume288en_US
dc.source.journalOcean Engineeringen_US
dc.source.issue2en_US
dc.identifier.doi10.1016/j.oceaneng.2023.116131
dc.identifier.cristin2191815
dc.relation.projectNorges forskningsråd: 223254en_US
dc.relation.projectNorges forskningsråd: 237929en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal