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A B S T R A C T

This study investigates the potential capability of a relatively new and unexplored signal-based approach
for shipboard wave estimation. The approach uses the phase-time-path-differences (PTPDs) from an array
of shipboard sensors to uniquely resolve the wave propagation direction and wave number. We derive a
kinematic PTPD model accounting for forward vessel speed and assess its theoretical foundation to model
the sensor delays on a rigid body. The forward-speed PTPD model is structurally equivalent to the zero-speed
model considered in previous works, thus retaining the same observability results provided by a noncollinear
array of a minimum of three sensors. Moreover, based on the outlined theory and PTPD model, we propose a
methodology to estimate the main wave propagation direction and wave number online by employing a fast
Fourier transform (FFT), an unscented Kalman filter (UKF), and a rigid-body measurement transformation based
on a single inertial measurement unit (IMU). Provided that the vessel in question can be considered a rigid body,
a single IMU is sufficient to obtain the desired wave quantities instead of three IMUs, as initially proposed in
our previous work. Additionally, our methodology incorporates a novel frequency threshold to avoid distorted
wave components caused by the effect of vessel filtering. The performance of our PTPD method is evaluated on
data collected from a wave tank and full-scale experiments involving a vessel with zero and non-zero forward
speed. The results show very good agreement with the reference wave values reported from a commercial wave
radar and wave buoys operating in proximity to the vessel, indicating that our proposed method is competitive
with existing wave measurement technology in terms of accuracy and online performance while being cheap,
easy to install, flexible, and robust against environmental influences.
1. Introduction

Accurate information about the propagation direction and fre-
quency characteristics of ocean waves is essential for various maritime
activities. Ship captains rely on this data to chart safer and more
efficient routes, reducing wave-related impacts and potential danger.
Notably, the risk of wave-induced rolling – particularly parametric
rolling – is a chief concern, capable of causing cargo loss and, in
extreme cases, vessel capsizing. Additionally, in dynamic position-
ing (DP) applications, knowing the wave direction aids in aligning
the vessel with the wave disturbance (a process known as weather-
vaning (Kim and Kim, 2014)) to minimize control forces and increase
stability and safety onboard. In the context of DP, the wave frequency
also plays a crucial role for filtering out oscillatory motions from
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entering the feedback loop, thereby improving fuel efficiency and
reducing actuator wear (Fossen, 2021). Moreover, knowledge about
the wave propagation direction and wave number/frequency can, in
general, serve as valuable input to several existing sea state estimation
frameworks (e.g., Brodtkorb et al. (2018)) to improve the quality of
wave estimations.

The physical distance between a pair of sensors situated on the
ocean surface induces a delay between the wave elevation measure-
ments recorded by them. This delay manifests itself as either a phase,
time, or path difference (PTPD), which depends on the distance between
the sensors, the propagation speed of the waves passing through the
bodies containing the sensors, and the angle at which the waves ap-
proach them. Many studies have investigated the capabilities of using
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the PTPDs between a group of sensors to determine the main wave
propagation direction (Esteva, 1976, 1977; Fernandes et al., 1988,
2000; Draycott et al., 2015, 2016, 2018; Luo et al., 2020). However,
some practical drawbacks of these works are that they do not consider
the wave number – although it can also be resolved from the same
data (Donelan et al., 1996; Fernandes et al., 2001) – and they rely
on a fixed stationary array of sensors, confining wave estimation to a
specific geographical site. A more practical approach is to bring the
sensors onboard a vessel and use the measured PTPDs to resolve the
wave direction (and wave number) at any desired location, stationary
or while moving. However, only a few studies have considered a
shipboard PTPD approach (Fu et al., 2011; Udjus, 2017; Heyn et al.,
2017; Dirdal et al., 2022). Hence, the capabilities of such an approach
still need more exploration in the context of shipboard wave estimation
(i.e., the field concerned with inferring statistics about ocean waves
from sensor measurements taken onboard a ship) by considering more
realistic wave conditions.

Most of the research on shipboard wave estimation is dominated
by approaches based on the wave buoy analogy (Waals et al., 2002;
Tannuri et al., 2003; Nielsen, 2006; Pascal et al., 2009; Nielsen, 2017a;
Brodtkorb et al., 2018). However, a significant practical drawback of
such approaches is that they rely on ship-dependent transfer functions
known as response amplitude operators (RAOs), which should be de-
termined for each ship using various hydrodynamic codes. Although
some recent research activities have addressed this issue by proposing
strategies for more accurate RAO tuning (Nielsen et al., 2021; Mounet
et al., 2022), such transfer functions are not trivial to obtain and
generally subject to many uncertainties. The fact that RAOs are trans-
fer functions also limits the theoretical validity of these model-based
approaches to linear systems, which for ships at sea, is only considered
valid for mild and moderate wave conditions. In contrast, signal-based
approaches (e.g., PTPD) are not constrained to any particular wave
climate and require no ship information, rendering them consider-
ably more practical as wave estimation is done directly from sensor
measurements. However, only a handful of signal-based techniques
are commercially available and hinge on wave radars and/or laser
altimeters, which are expensive, sensitive to environmental influences,
and challenging to install without expert help. Although shipboard
wave estimation techniques based on machine learning (Mak and Düz,
2019; Duz et al., 2019; Han et al., 2022; Mittendorf et al., 2022) are
also considered signal-based, they require ship-specific datasets, thus
restricting generalization to other vessels.

The PTPD approach, on the other hand, is inherently signal-based
and, when coupled with inertial measurement units (IMUs) as primary
sensory devices, alleviate many of the practical concerns listed above by
being inexpensive, robust against environmental impact, and easy to in-
stall; without requiring any detailed ship information. Despite the many
advantages, current PTPD approaches using IMUs (Udjus, 2017; Heyn
et al., 2017; Dirdal et al., 2022) have only been tested with stationary
model ships in wave tanks involving regular waves. Consequently, the
PTPD approach with IMUs needs further investigation in more realistic
wave conditions and forward speed to solidify their potential. In this
regard, extending the present PTPD framework to account for forward
vessel speed will significantly improve the practical feasibility of the
approach, which to our knowledge, is yet to be considered.

Accurate measurements of the PTPDs are a prerequisite for success-
ful wave estimation using the PTPD approach. In general, the PTPDs
are susceptible to several sources of error, including sensor noise,
sensor imperfections (e.g., nonlinear sensitivity character and non-
orthogonality and misalignment between inner sensitive axes), inexact
sensor locations and alignments when installed, low data sampling rate,
and modeling uncertainties. Although some of the literature above has
acknowledged some of these errors, only one study (Dirdal et al., 2022)
has attempted a quantitative analysis in the context of shipboard IMUs.
However, the latter study does not account for modeling errors caused
2

by mismatches in the PTPD dynamics when measured on a vessel (rigid
body) rather than on the sea surface. The magnitude of such errors may
be significant and can explain some of the deviations observed in the
wave estimation results of the latter study. Hence, it is important to
consider the properties of a rigid body in the theoretical foundation of
the PTPD approach for shipboard sensors.

A practical disadvantage of current PTPD approaches is that they
require much hardware in the form of multiple IMUs and cables that
should be connected, synchronized in time, and distances between
them measured before they can be applied. When multiple sensors are
considered, a reduction in the sensors’ sampling rate from their maxi-
mum possible value is usually required to accommodate the increased
information load associated with multiple simultaneous measurements.
However, decreasing the sensor sampling rate will inadvertently affect
the accuracy of the measured PTPDs (Dirdal et al., 2022), which, in
turn, will affect wave estimation quality. It is, however, possible to
reduce the amount of hardware to a single IMU by employing a rigid
body measurement transformation to generate the remaining (virtual)
IMU measurements. Although such a measurement transformation is
not novel (Zappa et al., 2001; Kjerstad and Skjetne, 2016), no work
has yet attempted to use this transformation to facilitate PTPD wave
estimation.

In general, implementing a methodology based on the PTPD con-
cept requires two main procedures: estimating the PTPDs from the
sensor measurements and estimating the wave direction and wave
number from the PTPDs. Although there are numerous ways of realizing
such a methodology, a practically feasible methodology must lever-
age two essential factors: accuracy and real-time/online estimation
performance—the focal points of most studies considering shipboard
wave estimation. However, another factor that needs to be addressed
is the lowpass wave filtering characteristics of a ship, which occur
whenever the waves passing through it are sufficiently short. When this
happens, the waves become distorted by the vessel, and the measured
vessel responses no longer accurately reflect the true wave conditions.
Although many works have shown awareness of this problem (Nielsen,
2007, 2008; de Souza et al., 2018; Nielsen et al., 2019; Nielsen and
Dietz, 2020), most of the discussions are qualitative, with the main
remedy being to consider other responses measured by additional com-
plementary sensors, which are less affected by filtering (Nielsen, 2008;
de Souza et al., 2018). A quantitative measure is introduced in a recent
study (Dirdal et al., 2022) showing when the effect of vessel filtering
is likely to occur based on the length and breadth dimensions of the
vessel and its orientation relative to the incoming waves. However,
there currently does not seem to exist a procedure for avoiding the
distorted portion of the measured vessel responses caused by high-
frequency waves, which is inevitable for any irregular sea as some of
the constituent wave components are naturally high in frequency.

In this study, we extend previous findings by the following con-
tributions. First, the theoretical foundation of the PTPD approach is
rigorously assessed. From this assessment, the circumstances under
which the PTPD approach may be used to model the phase difference
between a pair of sensors on a rigid body are carefully identified. These
conditions are also verified experimentally from data collected during
wave tank experiments with a model ship in regular and irregular
waves. Second, we derive a new PTPD model for vessels with short-time
constant forward speed and verify it experimentally on data collected
from forward speed experiments in a wave tank involving regular and
irregular waves. This PTPD model is structurally equivalent to our
previous zero-speed model and, hence, observable for a minimum of
three noncollinear-spaced sensors. Third, based on the theory outlined,
we propose a methodology for resolving the wave propagation direc-
tion and wave number online, which comprises an FFT, UKF, and a
rigid-body measurement transformation based on a single IMU. Our
methodology incorporates a novel frequency threshold derived from
the length and breadth dimensions of the vessel to avoid distorted
wave components due to the filtering effect. Finally, we assess the

capabilities of our proposed method in practice by considering data
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Fig. 1. Two sensors denoted 𝑠𝑖 and 𝑠𝑗 situated on (a) the ocean surface and (b) a rigid body. The distance between the sensors is labeled 𝑑𝑖𝑗 .
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Fig. 2. A bird’s-eye view of two sensors {𝑠𝑖} and {𝑠𝑗} positioned on the sea surface
ith a long-crested regular wave (shown in blue) passing through them with speed 𝑐.
he wave should travel a distance 𝑑𝑖𝑗 to get from {𝑠𝑗} to {𝑠𝑖}, which causes a constant
elay between the wave elevation time series recorded in each sensor. The distance 𝑑𝑖𝑗
s expressed in the wave tangent frame {𝑤} with axes (𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤) and is attached to
he (arbitrarily chosen) reference sensor {𝑠𝑖}. The 𝑥𝑤 axis points in the same direction
s the propagating waves, 𝑧𝑤 points upwards (out of the page), and 𝑦𝑤 completes the
ight-handed coordinate system (not shown, but coincides with 𝑦𝑠𝑖 ). The relative wave
irection 𝛽 is defined as the counterclockwise angle from 𝑥𝑤 to 𝑥𝑠𝑖 (chosen arbitrarily
s 180◦ in this example). The position of {𝑠𝑗} relative to {𝑠𝑖} is denoted by 𝑟𝑠𝑖𝑠𝑗 .

athered from a model wave tank and full-scale experiments. The full-
cale experiments involve a research vessel equipped with multiple
MUs and a commercial wave radar, operating in proximity to several
ave buoys on the west coast of Norway. The wave estimation results

how that our proposed method is competitive with existing wave
easurement technology in terms of accuracy and online performance
hile costing a fraction, being portable, flexible, and robust against
nvironmental impact.

. Theory

.1. Main idea

A pair of spatially distributed sensors in the water will generally
xperience a different delay than those on a rigid body. On the ocean
urface, the sensors are decoupled from each other, meaning that the
elay between the wave elevation measurements is solely determined
y the distance between the sensors and the propagation angle and
peed of the waves passing through them (Fig. 1(a)). On a rigid body,
owever, the sensors are interrelated, meaning that as soon as the
aves come in contact with the body, all sensor measurements will be
ffected simultaneously (Fig. 1(b)).

The differences between the sensor delays in the aforementioned
ituations can be shown quantitatively through some simple kinematics.
onsider the situation in Fig. 1(a) but from a bird’s-eye view later in
ime as illustrated in Fig. 2. The delay between the measurements in
ensor {𝑠 } and {𝑠 } manifests itself as either a phase, time, or path
3

𝑗 𝑖 e
ifference (PTPD). The path difference 𝑑𝑖𝑗 is simply the distance along
he wave propagation direction the wave must travel to get from {𝑠𝑗}
o {𝑠𝑖}. We obtain an expression for 𝑑𝑖𝑗 by decomposing the position
ector 𝑟𝑠𝑖𝑠𝑗 in the wave tangent frame {𝑤}, and extracting the resulting
-component. This operation is represented mathematically by
𝑤
𝑠𝑖𝑠𝑗

= 𝐑𝑤𝑠𝑖𝐫
𝑠𝑖
𝑠𝑖𝑠𝑗 , (1)

here 𝐫𝑠𝑖𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]⊤ denotes the coordinate position vector of
ensor {𝑠𝑗} relative to {𝑠𝑖} expressed in the sensor frame {𝑠𝑖} and 𝐑𝑤𝑠𝑖
s a rotational transform between {𝑠𝑖} and {𝑤} given by

𝑤
𝑠𝑖
=
⎡

⎢

⎢

⎣

cos 𝛽 sin 𝛽 0
sin 𝛽 −cos 𝛽 0
0 0 −1

⎤

⎥

⎥

⎦

.

arrying out the multiplication in Eq. (1) with the rotation matrix
bove, yields 𝐫𝑤𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗 cos 𝛽 + 𝑦𝑖𝑗 sin 𝛽, ∗, ∗]⊤, where we have omitted
he 𝑦 and 𝑧 components as they are not relevant. Hence, the path
ifference, which is the 𝑥-component of 𝐫𝑤𝑠𝑖𝑠𝑗 , becomes 𝑑𝑖𝑗 = 𝑥𝑖𝑗 cos 𝛽 +
𝑖𝑗 sin 𝛽, and the time it takes the wave to complete 𝑑𝑖𝑗 is simply

𝑖𝑗 =
𝑑𝑖𝑗
𝑐

=
𝑥𝑖𝑗 cos 𝛽 + 𝑦𝑖𝑗 sin 𝛽

𝑐
, (2)

where 𝑡𝑖𝑗 is the time difference between the measurements in {𝑠𝑗} and
{𝑠𝑖}, and 𝑐 is the wave celerity or phase velocity, as it is also called. For
a regular harmonic wave, the wave celerity is given by

𝑐 = 𝜔
𝑘
, (3)

where 𝜔 and 𝑘 denote the angular wave frequency and wave number,
espectively. Substituting Eq. (3) into Eq. (2), yields

𝑖𝑗 = 𝑘(𝑥𝑖𝑗 cos 𝛽 + 𝑦𝑖𝑗 sin 𝛽), (4)

here 𝛩𝑖𝑗 ∶= 𝜔𝑡𝑖𝑗 is the phase difference between the measurements in
ensors {𝑠𝑗} and {𝑠𝑖}.

Unfortunately, it is not straightforward to find a similar expression
s Eq. (4) for the situation where the sensors are mounted on a rigid
ody (Fig. 1(b)). If the sensor output is evaluated as acceleration, the
ifference in acceleration between two arbitrary points (here labeled
s 𝑠𝑗 and 𝑠𝑖) on the rigid body is modeled by

⃗𝑛𝑠𝑗 − 𝑎𝑛𝑠𝑖 =
̇⃗𝜔𝑛𝑏 × 𝑟𝑠𝑖𝑠𝑗 + �⃗�𝑛𝑏 × (�⃗�𝑛𝑏 × 𝑟𝑠𝑖𝑠𝑗 ), (5)

here 𝑎𝑛𝑠𝑗 and 𝑎𝑛𝑠𝑖 are the accelerations of {𝑠𝑗} and {𝑠𝑖} relative to the
avigational frame {𝑛},1 �⃗�𝑛𝑏 represent the angular rates of the body
rame {𝑏} relative to {𝑛}, ̇⃗𝜔𝑛𝑏 is the angular acceleration, and 𝑟𝑠𝑖𝑠𝑗 is
he position vector of {𝑠𝑗} relative to {𝑠𝑖}. It is interesting to see from
q. (5) that if the body simply oscillates up and down without any
ngular displacement (i.e., �⃗�𝑛𝑏 = ̇⃗𝜔𝑛𝑏 = 0⃗), the accelerations in both
ensors will be identical (i.e., zero delay). Hence, the measurement

1 The navigational or North-East-Down frame {𝑛} is a local tangent frame
ith origin defined at the center of gravity of the navigated object and coordi-
ates associated with Earth’s reference ellipsoid. We consider the navigational
rame to be Earth-fixed, which, for low-speed applications such as marine craft,
nables {𝑛} to be approximated as an inertial frame of Ref. Fossen (2021).
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delay perceived between sensors on a rigid body is caused by angular
displacements about the body’s roll, pitch, and yaw axes.

Although the cause of the sensor delays in Figs. 1(a) and 1(b) are in-
herently different (one is caused by the time it takes the wave to transit
between the sensors, while the other is governed by the angular rates
of the body induced by waves), they both share a common parameter,
namely, the sensor separation distance 𝑟𝑠𝑖𝑠𝑗 . If we decompose Eq. (5) in
{𝑏} and introduce the coordinate vectors 𝝎𝑏𝑛𝑏 = [𝑝, 𝑞, 𝑟]⊤, �̇�𝑏𝑛𝑏 = [�̇�, �̇�, �̇�]⊤,
and 𝐫𝑏𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]⊤, we can rewrite Eq. (5) in terms of the sensor
separation as

𝑎𝑏𝑛𝑠𝑗 ,𝑧 − 𝑎
𝑏
𝑛𝑠𝑖 ,𝑧

= (𝑝𝑟 − �̇�)𝑥𝑖𝑗 + (�̇� − 𝑞𝑟)𝑦𝑖𝑗 + (𝑞2 − 𝑝2)𝑧𝑖𝑗 , (6)

where we have only considered the 𝑧-components of the accelerations
as these are most relevant. As can be seen by studying Eqs. (4) and (6),
the sensor separation 𝐫𝑏𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]⊤ and difference in acceleration
(manifested as a difference in amplitude and phase between the signals)
are linearly proportional. Using this fact, it is possible to apply the PTPD
model to the situation in Fig. 1(b) by making the sensor separation
sufficiently small. In this way, the sensor delays will become small
enough that the models (4) and (6) almost yield the same result, and
we can use the former to model the phase difference between a pair of
sensors on a rigid body.2

2.2. A phase-time-path-difference model for surface vessels with constant
forward speed

An important limitation of Eq. (4) is that it is based on a stationary
pair of sensors, meaning that the model can only be applied to sta-
tionary vessels. As we shall see, we can generalize the phase difference
model to account for speed such that it may be applied to situations in
which the vessel is either stationary or moving.

In the following model derivation, consider the situation shown in
Fig. 3, which depicts an underway vessel with a pair of distributed
sensors, oriented at an angle relative to some incoming long-crested
harmonic waves. Recall from Section 2.1 that the PTPD model was de-
rived by projecting the relative sensor positions onto the wave tangent
frame {𝑤} and extracting the resulting 𝑥-component to get the path
difference 𝑑𝑖𝑗 . To carry out this operation for sensors on a rigid body,
the rotational transform must be modified to account for the vessel
roll and pitch angles induced by the waves (when the vessel oscillates
due to the waves passing through it, the path difference 𝑑𝑖𝑗 changes,
see Fig. 3(b)). Hence, a kinematic expression for 𝑑𝑖𝑗 can be obtained
by transforming the body-fixed position vector 𝑟𝑠𝑖𝑠𝑗 from {𝑠𝑖} to {𝑤}
using the rotational transform 𝐑𝑤𝑠𝑖 according to Eq. (1), where 𝐫𝑠𝑖𝑠𝑖𝑠𝑗 =
[𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]⊤ denotes the body-fixed sensor coordinates expressed in
{𝑠𝑖} and 𝐑𝑤𝑠𝑖 is now defined by two sequences of intermediate rotations
based on the 𝑧𝑦𝑥-convention (Fossen, 2021), i.e.,

𝐑𝑤𝑠𝑖 = 𝐑𝑧,𝛽𝐑𝑥,180◦𝐑𝑦,𝜃𝐑𝑥,𝜙 =
⎡

⎢

⎢

⎣

𝑐𝛽𝑐𝜃 𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙 𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙
𝑠𝛽𝑐𝜃 𝑠𝛽𝑠𝜃𝑠𝜙 − 𝑐𝛽𝑐𝜙 𝑠𝛽𝑠𝜃𝑐𝜙 + 𝑐𝛽𝑠𝜙
𝑠𝜃 −𝑐𝜃𝑠𝜙 −𝑐𝜃𝑐𝜙

⎤

⎥

⎥

⎦

,

(7)

where 𝑠 ⋅ = sin(⋅) and 𝑐 ⋅ = cos(⋅). Inserting Eq. (7) into Eq. (1) and
carrying out the multiplication, yields 𝐫𝑤𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗𝑐𝛽𝑐𝜃 + 𝑦𝑖𝑗

(

𝑐𝛽𝑠𝜃𝑠𝜙 +
𝑠𝛽𝑐𝜙

)

+ 𝑧𝑖𝑗 (𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙), ∗, ∗]⊤, where we have omitted the 𝑦 and 𝑧
components as they are not relevant. The path difference 𝑑𝑖𝑗 is simply

2 For sensors on a rigid body, the sensor separation and phase difference
re only proportional in a limited distance range. When the sensor separation
rows to infinity, the phase difference will converge to ±180◦, at which point
he sensor measurements will be anti-phase.
4

the 𝑥-component of 𝐫𝑤𝑠𝑖𝑠𝑗 and the time it takes a wave to complete the
distance 𝑑𝑖𝑗 is given by

𝑡𝑖𝑗 =
𝑑𝑖𝑗
𝑢𝑟

=
𝑥𝑖𝑗𝑐𝛽𝑐𝜃 + 𝑦𝑖𝑗

(

𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙
)

+ 𝑧𝑖𝑗 (𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)
𝑢𝑟

, (8)

where 𝑡𝑖𝑗 and 𝑢𝑟 denote the corresponding time difference and 𝑥-
omponent of the relative velocity between the waves and the vessel,
espectively. In general, the velocity of the waves relative to the vessel
an be expressed in the wave tangent frame {𝑤} as
𝑤
𝑏𝑤′ = 𝐯𝑤𝑛𝑤′ − 𝐯𝑤𝑛𝑏 = 𝐯𝑤𝑛𝑤′ − 𝐑𝑤𝑏 𝐯

𝑏
𝑛𝑏 = [𝑐 − 𝑈 cos 𝛽 cos 𝜃, ∗, ∗]⊤, (9)

here 𝐯𝑤𝑛𝑤′ = [𝑐, 0, 0]⊤ and 𝐯𝑏𝑛𝑏 = [𝑈, 0, 0]⊤, respectively, represent
he wave {𝑤′} and vessel {𝑏} velocities relative to the Earth-fixed
avigational frame {𝑛}, represented by the wave celerity 𝑐 and forward
essel speed 𝑈 . The rotational transform 𝐑𝑤𝑏 is identical to Eq. (7) since
𝑏} and {𝑠𝑖} are aligned (see Fig. 3). Substituting 𝑢𝑟 in Eq. (8) with the
irst component of Eq. (9), yields the time difference

𝑖𝑗 =
𝑥𝑖𝑗𝑐𝛽𝑐𝜃 + 𝑦𝑖𝑗

(

𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙
)

+ 𝑧𝑖𝑗 (𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)
𝑐 − 𝑈𝑐𝛽𝑐𝜃

. (10)

he time difference can be converted to a phase difference 𝛩𝑖𝑗 by
nserting Eq. (3) into Eq. (10), which gives

𝑖𝑗 = 𝑘
(

𝑥𝑖𝑗𝑐𝛽𝑐𝜃 + 𝑦𝑖𝑗 (𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙) + 𝑧𝑖𝑗 (𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)
)

, (11)

here 𝛩𝑖𝑗 ∶= (𝜔 − 𝑘𝑈 cos 𝛽 cos 𝜃)𝑡𝑖𝑗 . For well balanced vessels, the roll
nd pitch angles will on average be close to zero, i.e., �̄� = E[𝜙(𝑡)] ≈ 0
nd �̄� = E[𝜃(𝑡)] ≈ 0, where E[⋅] denotes the expected value. Based on
his notion, we can derive the mean phase difference �̄�𝑖𝑗 by inserting
he values �̄� = 0 and �̄� = 0 into Eq. (11), which yields

̄ 𝑖𝑗 = 𝑘(𝑥𝑖𝑗 cos 𝛽 + 𝑦𝑖𝑗 sin 𝛽), (12)

here the mean phase difference �̄�𝑖𝑗 ∶= 𝜔𝑒𝑡𝑖𝑗 is now defined in terms
f the wave encounter frequency 𝜔𝑒 = 𝜔 − 𝑘𝑈 cos 𝛽. By focusing on
he average phase difference, we have conveniently circumvented the
estrictive small-angle assumption considered in Dirdal et al. (2022). A
uantitative assessment of the error impact due to the transition from
q. (11) to Eq. (12) is given in Appendix. In the remainder of this study,
e consider the phase difference as the principal sensor delay, as this
uantity is most commonly treated in the literature.

.3. Forward speed state-space model

The phase difference model (12) can be formulated into a state-
pace model by introducing the state vector 𝐱 = [𝑥1, 𝑥2]⊤ = [𝛽, 𝑘]⊤

nd polar coordinates (𝑥𝑖𝑗 = 𝑅𝑖𝑗 cos 𝛼𝑖𝑗 , 𝑦𝑖𝑗 = 𝑅𝑖𝑗 sin 𝛼𝑖𝑗), and rewriting
q. (12) into the vector form

̄ 𝑖𝑗 =
[

𝑅𝑖𝑗 cos 𝛼𝑖𝑗 𝑅𝑖𝑗 sin 𝛼𝑖𝑗
]

[

𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]

.

or 𝑁 ≥ 3 number of sensors, the continuous-time state-space model
an be written compactly as

̇ = 𝟎,

𝐳 = 𝐡(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

⋮ ⋮
𝑅1𝑁 cos 𝛼1𝑁 𝑅1𝑁 sin 𝛼1𝑁
𝑅23 cos 𝛼23 𝑅23 sin 𝛼23

⋮ ⋮
𝑅2𝑁 cos 𝛼2𝑁 𝑅2𝑁 sin 𝛼2𝑁

⋮ ⋮
𝑅(𝑁−1)𝑁 cos 𝛼(𝑁−1)𝑁 𝑅(𝑁−1)𝑁 sin 𝛼(𝑁−1)𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
sensor configuration matrix

[

𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]

,

(13)



Ocean Engineering 288 (2023) 116131J.A. Dirdal et al.

v

p

w
d

Fig. 3. Three independent situations of an underway vessel (rigid body) with constant forward speed 𝑈 equipped with two sensors {𝑠𝑖} and {𝑠𝑗}, oriented at an angle 𝛽 relative
to incoming long-crested harmonic waves with propagation speed 𝑐. The position of {𝑠𝑗} relative to {𝑠𝑖} is represented by 𝑟𝑠𝑖𝑠𝑗 . The sensor axes point in the same direction as the
essel body frame {𝑏} (slightly faded). The tangent wave frame {𝑤} is attached to the vessel with axes (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) and origin coinciding with the (arbitrarily chosen) reference

sensor {𝑠𝑖}. The 𝑥𝑤 axis points in the same direction as the propagating waves, 𝑧𝑤 points upwards, and 𝑦𝑤 completes the right-handed coordinate system. The distance the wave
must travel to get from sensor {𝑠𝑗} to {𝑠𝑖} along the wave propagation direction is denoted 𝑑𝑖𝑗 and depends on the roll (𝜙), pitch (𝜃), and relative wave encounter (𝛽) angles.
The wave encounter angle 𝛽 is defined as the angle from 𝑥𝑤 to the projection of 𝑥𝑠𝑖 onto the tangent plane {𝑤}. Starboard incident waves are defined by 𝛽 ∈ (−180, 0]◦, whereas
ort incident waves are defined by 𝛽 ∈ (0, 180]◦. When 𝛽 = 0◦, the waves hit the stern first and we have following sea.
𝜆

w
o
𝛽
o

𝜆

here 𝐳 = [�̄�12, �̄�13, … , �̄�1𝑁 , �̄�23, … , �̄�2𝑁 , … , �̄�(𝑁−1)𝑁 ]⊤. The
imension of 𝐳 is 𝑃𝑁 × 1, where 𝑃𝑁 is the maximum number of

independent phase difference measurements associated with 𝑁 , which,
for nonlinear arrays, can be computed from

𝑃𝑁 =
𝑁(𝑁 − 1)

2
. (14)

The state-space model (13) is observable for a minimum of two inde-
pendent phase differences, i.e., three noncollinear sensors (see Dirdal
et al. (2022) for proof). As we shall see, if the sensor is an IMU,
it is sufficient to only consider a single IMU and use the rigid-body
measurement transform (5) to generate the remaining measurements
needed in Eq. (13) to uniquely resolve the wave encounter angle and
wave number. It is worth emphasizing that the state-space model (13)
is observable in shallow and deep waters as it only utilizes the general
equation for wave celerity (phase velocity) in its derivation. Hence, the
PTPD approach is valid for all water depths, provided that the vessel
undergoes sufficient wave excitation.

2.4. High-frequency waves

The wave undulations on the sea surface will trigger a heave re-
sponse from the vessel as they move through it. If the waves are
sufficiently long, the heave response will be similar to the wave el-
evation, except scaled in amplitude. However, if the waves are very
short, the heave response will be dissimilar from the waves due to
the effect of vessel lowpass filtering (Nielsen, 2007, 2008; de Souza
et al., 2018; Nielsen et al., 2019; Nielsen and Dietz, 2020; Dirdal et al.,
2022). The effect of vessel filtering occurs whenever the wavelength of
a particular wave is shorter than the projected wave trajectory distance
5

through the vessel (Dirdal et al., 2022). When this happens, multiple
wave crests will affect the vessel simultaneously, resulting in a distorted
heave response. Hence, in order to avoid the effect of filtering, the
wavelength 𝜆 should exceed the wave trajectory distance for a given
wave direction 𝛽, i.e.,

> 𝐿| cos 𝛽| + 𝐵| sin 𝛽|, (15)

here 𝐿 and 𝐵 represent the respective length and beam dimensions
f the vessel. A quick and easy way to assess whether (15) holds for all
is to check if the given wavelength is larger than the diagonal length

f the vessel (the maximum wave trajectory distance), i.e.,

>
√

𝐿2 + 𝐵2. (16)

If Eq. (16) holds, the effect of vessel filtering is avoided for all 𝛽 and
the vessel heave response will resemble the wave elevation (in other
words, the vessel behaves like a buoy).

It is worth emphasizing that the effect of vessel filtering on sensor
measurements is not accounted for by the PTPD model. As discussed
in Section 2.1, the PTPD model merely uses the travel distance, prop-
agation angle, and speed of the waves to quantify sensor delays and
neglects any rigid body effects. It is, therefore, important to exercise
caution when applying Eq. (13) to model the delay between ship-
board sensors, especially if filtering is occurring. As we shall see in
Section 3.3.3, this potential issue can be circumvented by employing
criterion (16) in the estimation procedure.

2.5. Theoretical results

To summarize, a pair of sensors on the sea surface generally ex-

perience a different delay than those on a rigid body. However, the
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Fig. 4. A block diagram illustrating the four procedures involved in our wave estimation methodology. The input data comprises the specific force, 𝐟 𝑏imu, and angular rates, 𝝎𝑏imu,
rom a shipboard IMU expressed in the vessel body frame {𝑏}. The input data is processed to yield estimates of the linear acceleration, �̂�𝑏𝑛𝑠𝑖 , and angular velocity, �̂�𝑏𝑛𝑏, which are

then transformed to other locations on the vessel based on the desired lever arms 𝐫𝑏. The 𝑧-components of the transformed accelerations are grouped into an acceleration matrix
𝐲𝑧 and the phase differences �̂� between them are estimated based on the frequency bandwidth 𝑓e,max. Finally, the phase differences are supplied to an unscented Kalman filter
which yields estimates of the wave encounter angle ̂̄𝛽 and wave number ̂̄𝑘.
delays in both situations are proportional to the sensor separation up
to a certain distance, although with different gradients. We conjecture
that the forward speed PTPD model, which is simple, explicit, and ob-
servable in terms of the wave propagation direction and wave number,
can be used to model the sensor delays on a rigid body given that the
sensor separation distances are sufficiently small, and the waves are
sufficiently long. These speculations can be compactly formulated into
the following assumption:

Assumption 1. If Eq. (15) holds for a given 𝜆 and 𝛽 and the separation
distance between a pair of sensors on a rigid body is sufficiently
small, then the state-space model (13) can accurately model the phase
difference between the heave measurements in each sensor.

If Assumption 1 holds, then we are guaranteed by the observability
proof of our state-space model that the relative wave propagation
direction and wave number can be uniquely determined from phase
differences between a group of sensors on a surface vessel (rigid body),
which leads to the following theorem:

Theorem 1. Consider a rigid body with constant forward speed 𝑈 ≥ 0,
oriented at an angle 𝛽 relative to the propagation direction of a regular wave
(Fig. 3) with wave number 𝑘. If Assumption 1 holds, then 𝛽 and 𝑘 can be
uniquely resolved from a minimum of three noncollinear sensors measuring
the body’s heave displacement or heave acceleration.

Proof. See Dirdal et al. (2022).

It is worth mentioning that the vessel roll and pitch motion cannot be
utilized with the PTPD approach as these motions do not exhibit any
phase difference across various points on the body (recall that for a
rigid body, angular motions are uniform for all points).

Suppose the sensors comprise a tri-axial accelerometer and gyro-
cope, such as an IMU. In that case, the minimum sensor requirements
mposed by Theorem 1 can be relaxed to a single sensor by employing
he acceleration transformation (5) to generate the other accelerations
eeded. This interesting result can be formulated into the following
orollary:

orollary 1.1. If the sensor is an inertial measurement unit (IMU), then
and 𝑘 can be uniquely resolved from a single IMU.

Before we can assess the validity of these theoretical claims ex-
erimentally, we need to develop a methodology that enables us to
ransform the IMU measurements to different ship locations, extract the
hase differences between the various measurements, and resolve the
ave direction and wave number from the phase differences.

. Methodology

Experimental verification of the theoretical results presented in
ection 2.5 poses two crucial questions, namely, how to measure
6

he phase difference between a pair of sensors and how to estimate
the wave direction and wave number from the phase differences. In
this section, we address these questions by proposing a methodology
(Fig. 4) for estimating the desired wave quantities. As we shall see, our
methodology comprises a sequence of procedures, each of which will
be discussed in the following subsections.

3.1. Data processing

The data processing steps performed on the raw IMU data involve
data segmentation, DC-removal, and lowpass filtering. These steps are
necessary to preserve the time-localization of events and clean the data
by mitigating unwanted biases and high-frequency noise.

3.1.1. Data segmentation
The ocean surface behavior is a non-stationary process, which im-

plies that its statistical parameters, such as wave height, direction, and
frequency, are time-varying. It is paramount to account for this time
variability when computing these parameters to correctly assess the
present ocean state. For instance, if we consider a very long data time
series and apply an FFT to this data, it becomes difficult to associate
which peak frequencies (and consequently which wave directions)
correspond to the actual time instances in which the events took place.
Hence, to preserve the time-localization of events using an FFT, it is
necessary to divide the data series into (quasi-stationary) segments and
process each data segment individually. This strategy is applied to the
input IMU data in the estimation procedure (Fig. 4).

The specific force and angular velocity data are segmented by mul-
tiplying the developing time series with a (moving) Hanning window
of a predefined length. The Hanning window alleviates the effect of
spectral leakage by smoothly decreasing the input to zero near the
endpoints, reducing potential discontinuities between the first and final
data samples. However, since the lower and upper tails of the Hanning
window are close to zero, a significant portion of the time series will
effectively be ignored in the analysis. To ensure that all information is
considered in the analysis, we use a 50% overlap between subsequent
segments, which is common for Hanning windows.

When segmenting the data for FFT analysis, a compromise ulti-
mately arises between the time and frequency resolution of the re-
sulting periodograms. The compromise between time and frequency
is regulated by the length of the window function considered (a long
window generally implies good frequency resolution but uncertainty in
the time resolution, and vice versa). An upper bound for the window
length can be established if the time intervals where the waveforms are
quasi-stationary are known. For ocean waves, stationarity is generally
preserved for up to 15–30 min (Holthuijsen, 2007).

3.1.2. DC removal and lowpass filtering
In general, the IMU measurements are subject to several stochastic

errors, which are typically separated and modeled as additive zero-
mean Gaussian white noise and a time-varying bias term. Adhering to
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this approach, we can use the standard three-axis accelerometer and
gyroscope sensor models from Fossen (2021), which are given as

𝐟𝑏imu = 𝐚𝑏𝑛𝑠𝑖 − 𝐠𝑏 + 𝐛𝑏acc + 𝐰𝑏acc,
𝑏
imu = 𝝎𝑏𝑛𝑏 + 𝐛𝑏ars + 𝐰𝑏ars,

(17)

here 𝐟𝑏imu and 𝝎𝑏imu are the respective specific force and angular
elocity measurements, 𝐚𝑏𝑛𝑠𝑖 and 𝝎𝑏𝑛𝑏 are the linear acceleration and
ngular velocity of the sensor frame {𝑠𝑖} with respect to {𝑛} (considered
arth-fixed and assumed inertial), 𝐛𝑏acc and 𝐛𝑏ars denote the respective
ensor biases, 𝐰𝑏acc and 𝐰𝑏ars denote the respective sensor noises, and 𝐠𝑏
enotes the gravitational acceleration. All quantities are expressed in
𝑏}.

As can be seen by studying Eq. (17), the IMU measurements are
enerally centered around a non-zero value due to the sensor biases
nd force of gravity. If left unaccounted for, this non-zero value or
C-offset will show up in the first frequency bin of the FFT spectrum
nd may leak power into adjacent bins, affecting other low-frequency
omponents. Hence, it is advantageous to remove the DC-offset before
FT processing. The latter can be achieved by simply averaging each
easurement time series and subtracting the average from itself. In

rder to reduce the effect of high-frequency noise on the average and
he angular velocity (which shall be differentiated later), we apply

lowpass filter with a cut-off frequency above the bandwidth of
he considered waves (for how to select this cut-off frequency, see
ection 3.3.3) to the IMU measurement segment. Hence, the final
stimated acceleration and angular velocity segments are given by

̂𝑏𝑛𝑠𝑖 = 𝐟𝑏imu − E[𝐟𝑏imu],

�̂�𝑏𝑛𝑏 = �̄�𝑏imu − E[�̄�𝑏imu],
(18)

here 𝐟𝑏imu and �̄�𝑏imu are the lowpass filtered signals and E[⋅] denotes the
xpected value. The averaging operation in Eq. (18) tacitly assumes that
he accelerometer and gyroscope biases in Eq. (17) remain more or less
onstant for the duration of each considered data segment. The validity
f this assumption can be assessed by evaluating the accelerometer and
yroscope in-run bias stabilities found in the IMU datasheet for the time
uration of the data segments. We assess the bias stability for the IMUs
onsidered in the wave tank and full-scale experiments in Sections 4.1.3
nd 5.1.2, respectively.

.2. Measurement transformation

The acceleration at one specific point on a rigid body can be trans-
ormed to any other location, provided that the body’s angular velocity
nd angular acceleration are known. This measurement transformation
s given in Eq. (5) and can be decomposed in the body frame {𝑏} as
ollows
𝑏
𝑛𝑠𝑗

= 𝐚𝑏𝑛𝑠𝑖 + �̇�𝑏𝑛𝑏 × 𝐫𝑏𝑠𝑖𝑠𝑗 + 𝝎𝑏𝑛𝑏 × (𝝎𝑏𝑛𝑏 × 𝐫𝑏𝑠𝑖𝑠𝑗 ), (19)

here 𝐚𝑏𝑛𝑠𝑗 is the transformed linear acceleration of virtual sensor {𝑠𝑗},
𝑏
𝑛𝑠𝑖

is the physical linear acceleration of sensor {𝑠𝑖}, �̇�𝑏𝑛𝑏 is the angular
cceleration, and 𝐫𝑏𝑠𝑖𝑠𝑗 is the position of {𝑠𝑗} relative to {𝑠𝑖}. If we
eplace 𝐚𝑏𝑛𝑠𝑖 and 𝝎𝑏𝑛𝑏 in Eq. (19) with our estimated quantities �̂�𝑏𝑛𝑠𝑖 and
̂ 𝑏𝑛𝑏 from Section 3.1.2, we can use Eq. (19) to generate any virtual

easurements needed by supplying the desired lever arms (sensor
eparation distances) 𝐫𝑏𝑠𝑖𝑠𝑗 . The main challenge with this approach,
owever, is that it requires an accurate estimate of �̇�𝑏𝑛𝑏, which is
ot usually measured. In this study, we obtain estimates of the latter
uantity by numerically differentiating �̂�𝑏𝑛𝑏. The data processing steps
ddressed in Section 3.1.2 ensure that the noise in �̂�𝑏𝑛𝑏 will not be
ignificantly amplified by differentiation. After the desired amount of
irtual accelerations have been generated, we extract the 𝑧-components
f all of them and place them into an acceleration matrix 𝐲𝑧 ∈ R𝑁×𝐿,
onsisting of 𝑁 𝑧-accelerations of length 𝐿.
7

A

Algorithm 1 Phase difference estimation
procedure PD(𝐲𝑧, 𝑓e,max)

�̂�𝑧 ← fft(𝐲𝑧) ⊳ Compute the FFT

�̂�𝑧 ← atan2
(

imag(�̂�𝑧), real(�̂�𝑧)
)

⊳ Compute the phase response

𝐟𝑝 ← max |�̂�𝑧|
0≤𝑓≤𝑓e,max

⊳ Store the peak frequencies (within 𝑓e,max) in a

vector

for 𝑓 in 𝐟𝑝 do

[�̂�1, �̂�2,… , �̂�𝑁 ]⊤ ← �̂�𝑧(𝑓 ) ⊳ Extract the phase values at

frequency 𝑓

�̂�𝑖𝑗 = �̂�𝑖 − �̂�𝑗 , 1 ≤ 𝑖 ≤ 𝑁 − 1, 2 ≤ 𝑗 ≤ 𝑁, 𝑖 < 𝑗 ⊳ Compute

the phase differences for all 𝑖 and 𝑗

�̂�(𝑘) ← [�̂�12, �̂�13, … , �̂�(𝑁−1)𝑁 ]⊤ ⊳ Store the phase

differences for each 𝑓 in a matrix

𝑘← 𝑘 + 1

end for

return �̂�

end procedure

3.3. Phase difference estimation

We estimate the phase differences between the measured waveforms
by employing an FFT with a frequency threshold to avoid wave com-
ponents potentially distorted by the vessel in question. The estimation
procedure is shown in Algorithm 1 and compromises the following
sequence of steps:

1. Compute the FFTs and phase responses of 𝐲𝑧.
2. Find the peak frequency of each magnitude response within a

maximum frequency threshold 𝑓e,max.
3. Extract the phase values for each peak frequency.
4. Compute the phase differences.

n this procedure, it is tacitly assumed that the dominant frequency
f the forced oscillation in heave aligns with the frequency of the
xternal wave force. This assumption is generally valid when the ship
ncounters a fully developed sea with sufficiently large wave ampli-
ude and wavelength (see Assumption 1). In the following subsections,
e elaborate on additional implementation details not mentioned in
lgorithm 1.

.3.1. Zero padding
The input to Algorithm 1 is the acceleration matrix 𝐲𝑧 ∈ R𝑁×𝐿. If 𝐿

s a power of two, radix-2 FFT algorithms can be used to compute the
requency responses, which are very efficient and can reduce processing
ime. If 𝐿 is not a power of two, radix-2 FFT algorithms may still be
pplied by appending zeros at the end of the time domain signals such
hat the total signal length becomes a power of two.

.3.2. Tolerance threshold
The inverse tangent function used to obtain the phase response in
lgorithm 1 is highly susceptible to rounding errors. As a result, the
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rounding errors typically appear as noisy spikes in the computed phase
response. A common strategy used to mitigate this problem is to define
a tolerance threshold 𝜖 and zero out the values of �̂�𝑧 for which |�̂�𝑧| < 𝜖.

.3.3. Frequency threshold
As discussed in Section 2.4, the vessel will distort wave components

assing through it if the wavelengths are sufficiently short. In reality,
n irregular sea comprises multiple wave components, some of which
ave wavelengths shorter than the wave trajectory distance through
he vessel. It is, therefore, essential to avoid such wave components
hen processing the heave response. The latter can be achieved by
nly considering the frequency components within the upper threshold
e,max of the FFT spectrum. Apart from scaling, sinusoidal components
ithin this range are deemed unaffected by the vessel.

For stationkeeping vessels (i.e., 𝑈 = 0), the zero-speed upper
hreshold 𝑓max is the frequency in which the right hand side (RHS) and
eft hand side (LHS) of Eq. (15) become equal, which occurs when

max =

√

√

√

√

𝑔∕2𝜋
√

𝐿2 + 𝐵2
tanh

(

2𝜋𝑑
√

𝐿2 + 𝐵2

)

, (20)

where 𝑔 is the gravitational constant and 𝑑 is the water depth. The
relationship above is derived by rewriting Eq. (15) in terms of the wave
number (i.e., 𝑘 = 2𝜋∕𝜆), and inserting the resulting expression for 𝑘 into
he dispersion relation
2 = 𝑘𝑔 tanh(𝑘𝑑). (21)

For underway vessels (i.e., 𝑈 > 0), the frequency threshold (20)
eeds to be adjusted to account for the Doppler shift given by

𝑒 = |𝜔 − 𝑘𝑈 cos 𝛽|, (22)

here 𝜔𝑒 is the Doppler shifted encounter frequency. Rewriting Eq. (22)
n terms of linear frequency and 𝑓max, yields the adjusted maximum
requency threshold 𝑓e,max given in terms of forward speed, i.e.,

e,max = |

|

|

𝑓max ±
𝑈𝐿

𝐿2 + 𝐵2
|

|

|

, (23)

here we have used 𝑘 = 2𝜋∕
√

𝐿2 + 𝐵2 and cos 𝛽 = ±𝐿∕
√

𝐿2 + 𝐵2

worst case scenario in which the wave trajectory distance is maxi-
um). The latter component on the RHS of (23) should be added or

ubtracted depending on whether the vessel is following or moving
gainst the waves, respectively.

.4. Unscented Kalman filter

The state-space model (13) is inherently nonlinear, which requires
onlinear estimation techniques to resolve the desired wave quantities.
lthough it is possible to solve the wave direction analytically from
q. (12), the Kalman filter framework offers several benefits over such
n approach. With the Kalman filter, it is easy to incorporate uncer-
ainties into the estimation procedure, handle multiple measurements,
nd simultaneously estimate the wave direction and wave number
nline (Dirdal et al., 2022). It is, however, necessary for the wave
umber to be positive, posing a constraint on the state estimate.

As discussed in Dirdal et al. (2022), the unscented Kalman filter
UKF) has certain advantages over the extended Kalman filter (EKF)
hen constraints are imposed on the state estimates. In short, the UKF
ccounts for constraints when updating the error covariance, which the
KF ultimately neglects. For this reason, the UKF was selected as our
ain algorithm and the following subsections explain how it may be

pplied to yield the desired wave quantities.
8

3.4.1. Algorithm
The UKF algorithm may be applied to discrete-time nonlinear dy-

namical systems of the form

𝐱𝑘 = 𝐟 (𝐱𝑘−1) + 𝐰𝑘, 𝐰𝑘 ∼  (𝟎,𝐐)

𝐳𝑘 = 𝐡(𝐱𝑘) + 𝐯𝑘, 𝐯𝑘 ∼  (𝟎,𝐑)
(24)

here 𝐱𝑘 ∶= 𝐱(𝑘𝑇𝑠) and 𝐳𝑘 ∶= 𝐳(𝑘𝑇𝑠) constitute the sampled state
nd measurement vectors for sample time 𝑇𝑠 and number 𝑘 (not to be
onfused with the wave number), 𝐟 and 𝐡 represent nonlinear transition
unctions, and 𝐰𝑘 and 𝐯𝑘 denote white Gaussian process and measure-
ent noise with covariance 𝐐 and 𝐑, respectively. If we discretize the

ontinuous-time state-space model (13) and compare it with Eq. (24),
t is clear that the former fits the required model form with 𝐟 (𝐱𝑘−1) =
𝑘−1 and 𝐡(𝐱𝑘) as before. The process and measurement noise 𝐰𝑘 and
𝑘 represent the expected deviation between reality and our process
nd measurement models. They are characterized statistically through
heir covariance matrices 𝐐 and 𝐑, which are discussed in detail in
ections 3.4.2 and 3.4.3, respectively.

The UKF algorithm with state constraints is given in Algorithm 2;
or relevant background material regarding the UKF and constraint
andling, the reader is referred to Brown and Hwang (1997), Julier
nd Uhlmann (2004), Kandepu et al. (2008), and Simon (2010) and
eferences therein. As a general rule, the UKF uses a deterministic
ampling scheme to select its sigma points. In this paper, we have
hosen the following set of sigma points

(𝑖)
𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂�−𝑘 , 𝑖 = 0

�̂�−𝑘 +
√

(𝑀 + 𝜆)�̂�−
𝑘 , 𝑖 = 1,… ,𝑀

�̂�−𝑘 −
√

(𝑀 + 𝜆)�̂�−
𝑘 , 𝑖 =𝑀 + 1,… , 2𝑀

(25)

here

𝜆 = 𝛼2(𝐿 + 𝜅) −𝑀

= dimension of state 𝐱𝑘
𝛼 = spread of samples about the mean
𝜅 = scaling factor

igma points outside the feasible region are projected onto the bound-
ry using the projection

(�̂�2) =

{

𝜖, �̂�2 < 𝜖
�̂�2, otherwise

(26)

here �̂�2 is the wave number estimate and 𝜖 is a small positive number
epresenting the boundary of the feasible region. The sigma points
re then propagated through the nonlinear transform (13) to yield
new cloud of transformed points. The statistics of these points are

hen computed by weighting them together using the following sets of
eights

(0)
𝜇 = 𝜆

𝜆 +𝑀
, 𝑊 (0<𝑖≤2𝑀)

𝜇 = 1
2(𝜆 +𝑀)

, (27)

𝑊 (0)
𝜎 = 𝑊 (0)

𝜇 + 1 − 𝛼2 + 𝛾, 𝑊 (0<𝑖≤2𝑀)
𝜎 = 1

2(𝜆 +𝑀)
. (28)

3.4.2. Process noise covariance
The conditions of the ocean environment, including wave direction

and wave number, are generally time-varying. Assuming that the de-
sired wave quantities are slowly varying, we can accommodate this
variability by modifying the state-space model (13) to include white
Gaussian noise with variance 𝜎2𝑤. The modified state-space model now
becomes a Gaussian random walk process of the form

�̇� = 𝐀𝐱 +𝐆𝐰, 𝐰 ∼  (𝟎,𝐃𝛿(𝑡 − 𝜏)), (29)

where 𝐀 = 𝟎2 (2 × 2 zero matrix), 𝐆 = 𝐼2 (2 × 2 identity matrix),
𝐃 = 𝜎2 𝐼 , and 𝛿(𝑡 − 𝜏) is the Dirac delta function. For simplicity, we
𝑤 2
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Algorithm 2 Unscented Kalman filter

procedure UKF(�̂�−𝑘 , �̂�
−
𝑘 , 𝐳𝑘)

𝑋(𝑖)
𝑘 ← Sigma(�̂�−𝑘 , �̂�

−
𝑘 ) ⊳ Compute sigma points using Eq. (25)

𝑋(𝑖)
𝑐 ← 𝑃 (𝑋(𝑖)

𝑘 ) ⊳ Project sigma points using Eq. (26)

�̂�−𝑘 ←
∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜇 𝑋(𝑖)

𝑐 ⊳ Compute the apriori state estimate with

Eq. (27)

�̂�−
𝑘 ←

{
∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜎 (𝑋(𝑖)

𝑐 − �̂�−𝑘 )(𝑋
(𝑖)
𝑐 − �̂�−𝑘 )

⊤} +𝐐 ⊳ Compute the

apriori error covariance with Eq. (28)

𝑍(𝑖)
𝑘 ← 𝐡

(

𝑋(𝑖)
𝑐
)

⊳ Propagation of sigma points using Eq. (13)

�̂�−𝑘 ←
∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜇 𝑍(𝑖)

𝑘 ⊳ Predicted measurement

�̂�𝑘 ←
{
∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜎 (𝑍(𝑖)

𝑘 − �̂�−𝑘 )(𝑍
(𝑖)
𝑘 − �̂�−𝑘 )

⊤} + 𝐑 ⊳ Compute the

innovation covariance

�̂�𝐱𝐳
𝑘 ←

∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜎 (𝑋(𝑖)

𝑐 − �̂�−𝑘 )(𝑍
(𝑖)
𝑘 − �̂�−𝑘 )

⊤ ⊳ Compute the

cross-covariance

𝐊𝑘 ← �̂�𝐱𝐳
𝑘 �̂�−1𝑘 ⊳ Compute the Kalman gain

�̂�𝑘 ← �̂�−𝑘 +𝐊𝑘(𝐳𝑘 − �̂�−𝑘 ) ⊳ Compute posterior state estimate

�̂�𝑘 ← �̂�−
𝑘 −𝐊𝑘�̂�𝑘𝐊⊤

𝑘 ⊳ Compute posterior error covariance

return �̂�𝑘, �̂�𝑘
end procedure

have used the same variance 𝜎2𝑤 to describe the variability of the wave
irection and wave number. From basic control theory, it can be shown
hat the exact discretization of Eq. (29) is given by

𝑘 = 𝐅𝐱𝑘−1 + 𝐰𝑘,

here 𝐅 = 𝑒𝑇𝑠𝐀 = 𝐼2 and

𝑘 = ∫

𝑡𝑘

𝑡𝑘−1
𝑒(𝑡𝑘−𝜏)𝐀𝐆𝐰(𝜏)𝑑𝜏 = ∫

𝑡𝑘

𝑡𝑘−1
𝐰(𝜏)𝑑𝜏,

here we have simplified the latter expression by inserting the values
or 𝐀 and 𝐆 into it. The process noise covariance 𝐐 is given by

= E[𝐰𝑘𝐰⊤𝑘 ] = 𝑇𝑠𝐃 = 𝑇𝑠𝜎
2
𝑤𝐼2, (30)

here 𝑇𝑠 = 𝑡𝑘 − 𝑡𝑘−1 denotes the sampling period.

.4.3. Measurement noise covariance
Both the phase difference measurements 𝐳𝑘 and measurement model

(𝐱𝑘) are subject to uncertainties that will cause discrepancies between
hem. The discrepancies are modeled by white Gaussian noise 𝐯𝑘,
hich—if adequately designed (i.e., choosing the noise covariance 𝐑
ppropriately)—can account for prevalent errors. In this work, we
eem errors caused by (i) submodeling and (ii) the FFT to be most
undamental to any deviations observed. It is important to address
hese errors to get an estimate of the uncertainties in the desired wave
uantities, which, in turn, indicate whether they can be relied on or
ot.

The errors caused by (i) can be divided into two distinct groups:
a) errors due to the model simplification performed on Eq. (11)
i.e., averaging the instantaneous phase differences), and (b) errors
esulting from the fact that we are applying a PTPD model to the phase
ifferences on a rigid body. The phase difference error caused by (a)
an be quantitatively assessed by evaluating the absolute difference
etween Eqs. (11) and (12), which, for an arbitrary pair of sensors,
ields

𝛩𝑖𝑗 − �̄�𝑖𝑗 | =
|

|

|

𝑘𝑅𝑖𝑗
(

𝑐𝛽𝑐𝛼𝑖𝑗 (𝑐𝜃 − 1) + 𝑐𝛽𝑠𝜃𝑠𝜙𝑠𝛼𝑖𝑗

+ 𝑠𝛽𝑠𝛼𝑖𝑗 (𝑐𝜙 − 1)
)

+ 𝑘𝑧𝑖𝑗
(

𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙
)

|

|

|

. (31)
9

(

In all the wave tank experiments, the model error (31) was less than 1◦

or all experimental wave parameters and sensor pairs (see Appendix).
e deem errors of this magnitude minor and, as we shall see, are also

ominated by the error incurred from (ii). For these reasons, we neglect
rrors due to (a) in the measurement covariance.

In contrast to (a), model deviations caused by (b) are considerably
ore challenging to quantify. The challenge arises because we lack a
odel quantifying directly how the phase changes when a measure-
ent is transformed using Eq. (19) (if we had such an explicit model

his would render the PTPD approach redundant). In order to assess the
mpact of (b), we rely on experimental data to quantify the deviation
etween the true phase differences and those predicted by our PTPD
odel. The experimental results from the wave tank show that the
odel error caused by (b) depends on the separation distance between

he sensors. Hence, if the sensors are sufficiently close, (b) can safely
e neglected from the measurement noise covariance without incurring
ignificant errors. A discussion of the sensor separation is given in
ection 4.2.1.

The phase difference error associated with (ii) can be attributed
o spectral leakage, which occurs whenever the considered waveform
s not periodic within the given sample interval. In other words, if
he actual waveform frequency is not an integer multiple of the fre-
uency resolution, the former will not be in the exact center of an FFT
requency bin, causing a spread of power into neighboring bins. For
aveforms of finite duration comprising multiple frequencies, spectral

eakage will generally persist as all the frequency components will
enerally not be integer multiples of the frequency resolution. An
nalysis of the FFT phase error resulting from spectral leakage is given
y Dishan (1995), who shows that the error can be quantified as

̃ = 𝜋𝑇𝑓, (32)

here �̃� ∶= �̂� − 𝛩 is the phase error between the true and estimated
hase (represented by a hat), 𝑇 is the duration of the considered
aveform, and 𝑓 ∶= 𝑓𝑛 − 𝑓 is the frequency error between the true

frequency and estimated frequency bin 𝑓𝑛 = 𝑛∕𝑇 for 𝑛 = 0, 1,… , 𝐿∕2−1,
where 𝐿 denotes the transform length. The maximum frequency error
occurs whenever the true frequency resides in the exact middle of two
frequency bins, i.e.,

𝑓max = 𝛥
2
,

where 𝛥 = 1∕𝑇 is the frequency resolution. Inserting the latter into
Eq. (32), yields the maximum phase error, i.e.,

�̃�max = 𝜋
2
. (33)

Based on Eq. (33), the upper error bound of the computed phase
difference 𝛩𝑖𝑗 = 𝛩𝑖 − 𝛩𝑗 becomes

|�̃�𝑖𝑗 | = |�̂�𝑖𝑗 − 𝛩𝑖𝑗 | = |(�̂�𝑖 − 𝛩𝑖) − (�̂�𝑗 − 𝛩𝑗 )| = |�̃�𝑖 − �̃�𝑗 | ≤ |�̃�𝑖|+|�̃�𝑗 | ≤ 𝜋.

(34)

lthough the theoretical error bound (34) is significant and may dis-
uade the FFT for phase estimation, in practice, we see that employing
Hanning window with the FFT leads to very accurate phase difference
stimates by reducing spectral leakage.3 Moreover, the main focus of
his study is not optimality but rather a proof of concept of the PTPD
pproach to rigid bodies. As we shall see, the FFT algorithm is sufficient
o achieve the latter goal.

The error bound (34) indicates that the true phase difference can
e located anywhere within ±𝜋 of the estimated phase difference. This

3 Multiple regular wave experiments were considered, and the phase differ-
nce estimates produced by the FFT with a Hanning window and curve fitting
considered ground truth) agreed very well.
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Table 1
A summary of the initial state estimates, covariances, and internal parameters used in
the UKF.

UKF initialization �̂�0 = [0, 0.05]⊤

�̂�0 = diag([ 1
3
𝜋2 , 2])

Process and measurement covariance Wave tank experiments
𝐐 = 𝑇𝑠𝜎2𝑤𝐼2, 𝜎𝑤 = 1 × 10−3

𝐑 = 1
3
𝜋2𝐼𝑃𝑁

Full-scale experiments
𝐐 = 𝑇𝑠𝜎2𝑤𝐼2, 𝜎𝑤 = 1 × 10−1

𝐑 = 1
72
𝜋2𝐼𝑃𝑁

UKF parameters 𝑀 = 2, 𝛼 = 0.01, 𝛾 = 2, 𝜅 = 0

type of uncertainty is characteristic of a uniform distribution with zero
mean and variance

𝜎2𝛩fft
= 1

3
𝜋2. (35)

owever, the UKF algorithm requires the measurement noise 𝐯𝑘 to be
ero mean Gaussian distributed. To accommodate this requirement,
e approximate the uniform distribution above by a Gaussian with
ariance (35).

It is worth highlighting that there are no uncertainties in the virtual
ensor locations when using the measurement transformation (19) to
enerate the virtual measurements. Hence, by employing Eq. (19) we
liminate uncertainties in the sensor locations as an error source, which
ere considered prominent in our previous work (Dirdal et al., 2022).

.4.4. Initial parameter settings
A summary of the initialization parameters, process and measure-

ent covariances, and internal parameters used in Algorithm 2 are
isted in Table 1. It is worth stressing that faster convergence may
e achieved by initializing the wave number to the value given by
he dispersion relation (21) using the frequency obtained from the
FT. In this paper, however, we chose the initial values in Table 1 to
emonstrate the validity of Theorem 1.

The initially estimated error covariance �̂�0 was selected by modeling
he initial wave direction error as a uniform distribution over the
nterval (−𝜋, 𝜋] and approximating it by a Gaussian distribution with
he same variance. The wave number variance was chosen heuristically
ut relatively large, reflecting our uncertainty in the actual value. The
rocess and measurement covariance, 𝐐 and 𝐑, were selected based on
ur analysis in Sections 3.4.2 and 3.4.3. Note that the sets of values
or 𝐐 and 𝐑 were chosen slightly differently in the wave tank and full-
cale experiments to represent the conditions of the wave environment
onsidered. For instance, in the wave tank, the wave conditions were
ompletely stationary (represented by a low 𝜎𝑤), whereas, in the ocean,
he wave conditions were considerably more variable (represented by a
arger 𝜎𝑤). In the full scale experiments, the measurement covariance
as reduced as this yielded better estimation results. As discussed in
ection 3.4.3, we deem this reduction acceptable as the FFT phase
stimates were generally very close to the ground truths in the wave
ank experiments.

.5. Summary of methodology

Our complete wave direction and wave number estimation method-
logy is given in Algorithm 3, merging all the procedures discussed in
his section into one algorithm that is recursively applied for each new
ata segment. The input to Algorithm 3 comprises a data segment of the
aw specific force and angular velocity measurements expressed in the
essel body frame {𝑏} from a single IMU, the desired (virtual) locations
f the other IMU measurements (i.e., sensor separation distances), and
10

maximum frequency threshold 𝑓max denoting the bandwidth of the
Algorithm 3 Wave direction and wave number estimation algorithm

procedure WDN(𝐟𝑏imu, 𝝎𝑏imu, 𝐫𝑏, 𝑓max)

𝑓e,max ← Doppler(𝑓max) ⊳ Compute the Doppler frequency

threshold using (23) with vessel speed 𝑈

�̂�𝑏𝑛𝑠𝑖 , �̂�
𝑏
𝑛𝑏 ← DP(𝐟𝑏imu, 𝝎𝑏imu, 𝑓e,max) ⊳ Data processing using (18)

with 𝑓e,max as cut-off frequency

𝐲𝑧 ← MT(�̂�𝑏𝑛𝑠𝑖 , �̂�
𝑏
𝑛𝑏, 𝐫

𝑏) ⊳ Measurement transformation using (19)

with virtual sensor locations 𝐫𝑏

�̂� ← PD(𝐲𝑧, 𝑓e,max) ⊳ Phase difference estimation given by

Algorithm 1

for 𝑖 = 1 ∶ length(�̂�) do

�̂�, �̂� ← �̂�0, �̂�0 ⊳ Initial state and covariance estimates given

in Table 1

for 𝑗 = 1 ∶ length(𝐲𝑧) do

𝐳 ← �̂�(𝑖) ⊳ Extract phase differences corresponding to

each peak frequency

�̂�, �̂� ← UKF(�̂�, �̂�, 𝐳) ⊳ Wave direction and number

estimation given by Algorithm 2

end for

�̂�(𝑖) ← �̂� ⊳ Store final wave estimate from UKF

end for

̂̄𝛽, ̂̄𝑘 ← mean (�̂�) ⊳ Extract average wave direction and wave

number estimates

return ̂̄𝛽, ̂̄𝑘

end procedure

considered waves. The frequency threshold should not exceed the upper
threshold given by Eq. (20) and, if the vessel is moving with speed
𝑈 , should be adjusted to 𝑓e,max by considering Eq. (23) (when 𝑈 = 0,
𝑓e,max reduces to 𝑓max). The length of the considered data segment and
percentage overlap with consecutive segments are generally tunable
parameters. As we shall see, these parameters regulate the trade-off
between accuracy and online estimation performance and should be
carefully selected.

The estimated phase differences matrix �̂� from Algorithm 1 has
dimension 𝑃𝑁 ×𝑁 , which means there are 𝑁 sets of phase differences
pertaining to each peak frequency. For this reason, the UKF algorithm
must be applied 𝑁 times to account for each, potentially different, set
of phase differences, which, in turn, yields 𝑁 separate wave estimates.
We take the average of all these estimates and report this as the final
estimated wave direction and wave number.
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Fig. 5. The position and orientation of the model ship C/S Arctic Drillship (CSAD) were held fixed by a rope-pulley system.
4. Experimental validation of theory

4.1. Experimental design

The wave tank experiments were conducted in the NTNU marine
cybernetics laboratory, which is a small wave basin with dimensions of
40 m × 6.45 m × 1.5 m. The laboratory is equipped with a wave maker,
towing carriage, and real-time positioning system, making it an excel-
lent playground for model-ship testing in regular and irregular waves.4
We used the same model ship as in Dirdal et al. (2022), i.e., a 1:90
scaled model C/S Arctic Drillship (CSAD) equipped with several IMUs.
In the following subsections, we explain the design measures taken
to ensure that the assumptions of Section 2.5 were not significantly
violated during data collection.

4.1.1. Constant heading and forward speed
The model ship heading and position were confined by a rope-pulley

system connecting the ship to a towing carriage (Fig. 5). Each rope was
attached to a spring, allowing almost free motions in heave, roll, and
pitch while limiting the surge, sway, and yaw motions. The ropes were
interchanged and adjusted to produce the desired boat headings.

Constant forward speed was achieved by using the towing carriage
to pull the ship through the water. We considered three different
carriage speeds, 0.5 m/s, 0.6 m/s, and 0.7 m/s, which, in full-scale,
correspond to 9.1 knots, 11.1 knots, and 12.8 knots (using Froude
scaling with 1:90 model scale), and are within the range of average
transit speeds typical for drillships. Due to the limited length of the
wave basin, these speeds could not be sustained by the towing carriage
for more than 40 s in the slowest speed trial and less than 30 s in the
highest speed trial. Consequently, the duration of all the recorded IMU
data with forward speed is less than 40 s.

Due to the narrowness of the wave basin, only head sea (𝛽 =
180◦) and following sea (𝛽 = 0◦) conditions could be tested in the
forward speed trials. Some oscillations in the heading angle of the ship
were observed during experiments due to the towing carriage, impact
of waves, and rope-pulley system. In order to assess the deviation
caused by these oscillations, the real-time heading angle was measured
using a separate camera-based positioning system called Qualisys. The
measurements reported by Qualisys showed that the maximum error

4 For details on the equipment, the reader is referred to the laboratory
website: https://www.ntnu.edu/imt/lab/cybernetics.
11
between the initial heading and heading during experiments was less
than 5◦. To ensure that the results were minimally affected by such
deviations, the true wave encounter angle was based on the average
heading angle computed from the Qualisys heading measurements.

4.1.2. Wave period and wave height
The experimental wave periods were generally selected above the

CSAD lower wave period threshold 𝑇min = 1∕𝑓max ≈ 1.3 s (computed
by inserting the CSAD length and breadth dimensions, 𝐿 = 2.58 m
and 𝐵 = 0.44 m, with a water pool depth of 1.45 m into Eq. (20)) to
reduce the effect of vessel filtering on the IMU data. However, regular
wave experiments were conducted with a wave period of 𝑇𝑝 = 1.0 s to
demonstrate the issues related to high-frequency waves.

In general, as long as the vessel can ‘‘feel’’ the waves passing
through it, Theorem 1 is valid irrespective of how small or tall the
waves are. In practice, however, higher waves imply a higher signal-
to-noise ratio (SNR) in the IMU measurements, which can improve
estimation results. Despite the advantage of a high SNR, considerable
wave heights posed challenges to our rope-pulley system causing large
oscillations in the heading angle of the CSAD. Moreover, significant
waves caused more water exposure on deck, increasing the risk of water
leaking into the vessel and damaging electronics. For these reasons,
only slight, moderate, and (to some extent) rough sea states were
considered in the experiments (Table 2).

4.1.3. Sensor configuration
We equipped the CSAD with four Bosch BMI160 IMUs to record

the vessel motions caused by waves. The IMUs were fastened to the
vessel using Velcro tape and the array configuration is illustrated in
Fig. 6(a): The sensor array is noncollinear, with {𝑠1}, {𝑠2}, and {𝑠3}
being almost coplanar and {𝑠4} significantly elevated compared to
the rest. The IMUs are all connected to a Raspberry Pi 3 Model B+
through a common serial bus using the I2C communication protocol.
The individual IMU measurements were time-synchronized based on
the internal clock of the Raspberry Pi. The IMU sampling rate was set
to 50 Hz for all experiments as the serial bus could not handle the
increased information load associated with higher sampling rates.

Unfortunately, Bosch does not provide any information about the in-
run bias stability of the accelerometers and gyroscopes in the BMI160
IMU, meaning it is difficult for us to assess whether the biases remain
constant or not within the time frame of the recorded data segments.
However, it is plausible that the IMU data collected during forward
speed were not significantly affected by the bias due to the short time

https://www.ntnu.edu/imt/lab/cybernetics
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Table 2
The peak wave periods (𝑇𝑝) considered in the experiments, along with the corresponding wave height 𝐻 (regular waves) and significant wave height 𝐻𝑠 (irregular waves). Numbers
utside parentheses represent the actual model-scale experimental parameters, whereas numbers inside parentheses represent the equivalent full-scale parameters (obtained using
roude scaling with scale factor 90). All scaled wave heights can be characterized as either a slight, moderate, or rough sea state (Price and Bishop, 1974) with wave periods
ithin the frequency range of wind-generated waves. Wave periods and wave heights are given in seconds and meters, respectively.
𝑇𝑝 1.0 (9.5) 1.4 (13.3) 1.5 (14.2) 1.6 (15.2) 1.8 (17.1) 2.0 (19.0) 2.5 (23.7)

𝐻 0.040 (3.56) – 0.027 (2.43) – – 0.017 (1.53) 0.011 (1.03)
𝐻𝑠 – 0.027 (2.43) – 0.018 (1.63) 0.017 (1.53) 0.014 (1.29) –
.

Table 3
Absolute phase difference errors �̃�𝑖𝑗 between our phase difference model (12) and the FFT estimated phase difference between the processed 𝑧-accelerations of IMUs {𝑠𝑖} and {𝑠𝑗}
onfigured according to Fig. 6(a). The errors were evaluated for various sensor pairs exposed to regular waves with wave periods 𝑇𝑝 = 1.0 s, 1.5 s, 2.0 s, and 2.5 s and vessel
peeds 𝑈 = 0.5 m∕s, 0.6 m∕s, and 0.7 m∕s. The top and bottom tables show results for following sea (𝛽 = 0◦) and head sea (𝛽 = 180◦), respectively. All values are given in degrees
𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

�̃�12 �̃�13 �̃�24 �̃�34 �̃�12 �̃�13 �̃�24 �̃�34 �̃�12 �̃�13 �̃�24 �̃�34

1.0 s 147.75 150.61 283.82 286.68 119.76 118.77 235.21 234.23 151.67 153.07 298.31 299.71
1.5 s 5.72 6.78 36.70 35.64 4.61 5.36 37.76 37.01 4.29 2.95 39.32 40.65
2.0 s 0.55 0.10 13.58 12.94 1.77 2.69 11.97 11.05 0.22 0.65 14.75 13.88
2.5 s 0.66 1.22 4.87 4.31 0.47 0.41 6.06 5.17 0.72 0.16 4.50 5.06

𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

�̃�12 �̃�13 �̃�24 �̃�34 �̃�12 �̃�13 �̃�24 �̃�34 �̃�12 �̃�13 �̃�24 �̃�34

1.0 s 103.35 108.24 230.45 235.33 106.01 108.75 230.45 233.19 108.01 106.72 234.41 233.12
1.5 s 0.33 0.22 37.77 37.22 2.49 2.43 34.34 34.40 4.35 4.29 30.53 30.60
2.0 s 1.95 1.55 15.23 14.83 3.13 2.59 16.78 16.23 5.27 4.48 21.21 20.43
2.5 s 2.21 2.20 9.91 9.90 1.38 0.93 9.10 8.65 2.19 2.57 9.29 9.68
Fig. 6. The IMU array configurations considered in the wave tank experiments. IMUs 1, 2, 3, and 4 are denoted {𝑠1}, {𝑠2}, {𝑠3}, and {𝑠4}, respectively. The location of each
sensor is given in millimeters with respect to the vessel body frame {𝑏}. The origin of {𝑏} is indicated by a cross and defined midships with the 𝑧-axis pointing down (into the
page). The sensor configuration in (a) shows the original configuration of physically interconnected IMUs (filled circles), whereas (b) shows the virtual sensor configuration where
only IMU 1 is physical and the locations of the other IMUs are virtual (hollow circles).
duration of all experiments (less than 40 s). On the other hand, the
duration of the IMU data collected at zero speed was around 120 s,
which may have been affected to a greater extent by the bias instability.

4.2. Results and discussion

In this section, we assess the validity of the theory developed
in Section 2.5 by considering IMU data collected from experiments
conducted in the wave basin where the model ship was stationary and
underway in both regular and irregular waves. Since the time durations
of the collected IMU data were short, we consider each complete time
series as a single input data segment to our wave estimation algorithm
(Algorithm 3). In the following results, the reference wave number was
computed using the dispersion relation (21) along with the pool depth
𝑑 = 1.45 m and the true peak wave period (i.e., the wave period used
as input to the wavemaker machine). The peak wave period value was
confirmed by examining the frequency content of the wave elevation
data obtained from several wave probes placed around the tank. The
12

reference wave propagation angle was obtained by fixing the ropes
of the model ship to produce the desired boat headings (Fig. 5) and
confirming this value with the Qualisys camera system. In the following
results, we refer to the wave propagation angle relative to the boat
heading as the wave encounter angle when the vessel moves and the
wave direction when the vessel is stationary.

4.2.1. Experimental validation of Assumption 1
We can assess the validity of Assumption 1 by comparing the phase

differences predicted by Eq. (12) with the actual phase differences
measured between the sensors on the vessel for a range of vessel
speeds, wave periods, and wave directions. The error between the phase
differences (Table 3) reveal three interesting observations: (i) the phase
errors associated with wave period 𝑇𝑝 = 1.0 s are disproportionately
large compared to the other wave periods, (ii) the sets of phase errors
{�̃�12, �̃�13} are smaller than {�̃�24, �̃�34} for all experiments, and (iii) the
errors generally decrease with increasing wave period.

The extreme deviations in observation (i) are caused by vessel fil-

tering, which (in this case) occurs whenever the wave period is roughly
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Fig. 7. The phase differences predicted by our model (12) (solid blue line) vs. the ‘‘true’’ phase differences (blue crosses) between respective sensor pairs as a function of wave
eriod for vessel speed 𝑈 = 0.5 m∕s. The ‘‘true’’ phase differences were obtained by applying an FFT to the processed 𝑧-accelerations of each IMU to get the corresponding
hase values. The results in red (dashed-dotted curves and squares) show the corresponding phase differences after virtually moving IMU 4 closer to the other IMUs. This virtual
lacement was achieved by employing the measurement transformation (19) and the modified sensor configuration in Fig. 6(b), together with the processed linear accelerations,
ngular rates, and angular accelerations of IMU 1. The dashed-dotted line shows the predicted phase differences (12) based on the new sensor location, whereas the squares
how the corresponding ‘‘true’’ phase differences obtained using an FFT as before. Left and right-handed plots show results for following sea (𝛽 = 0◦) and head sea (𝛽 = 180◦),
espectively. The phase difference results for 𝑈 = 0.6 m∕s and 0.7 m∕s have been omitted as they were almost identical to the results displayed.
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ess than 1.3 s.5 When the waves are sufficiently short, the vessel acts as
lowpass filter and attenuates the waves passing through it, resulting

n a reduction in the angular rates of the body. A reduction in the an-
ular rates causes the rigid-body accelerations to become increasingly
imilar (see Eq. (6)), which, in turn, implies that the phase differences
pproach zero. However, the phase differences predicted by Eq. (12)
enerally increase with decreasing wave period as it does not consider
rigid body. These opposite behaviors result in a growing deviation

etween the true phase difference dynamics and our proposed model
Fig. 7). As the wave period decreases, the true phase differences will
pproach zero due to vessel lowpass filtering becoming increasingly
ominant, whereas the predicted phase differences continue to infinity.

The noticeable difference between the sets of phase errors in obser-
ation (ii) is mainly caused by a difference in the separation distance
etween sensors {𝑠1, 𝑠2, 𝑠3} and {𝑠2, 𝑠3, 𝑠4} (Fig. 6(a)). Specifically, the
-coordinate of {𝑠4} is significantly larger than {𝑠2} and {𝑠3}, which
nduces a larger deviation between the estimated and actual phase
ifferences associated with {𝑠4}. However, if we bring {𝑠4} closer to
he other sensors, the deviation decreases to zero (Fig. 7). As explained
n Section 2.1, we expect Eqs. (6) and (12) to yield roughly the same
hase difference when the separation is sufficiently small since both
odels are proportional to the sensor separation. It is worth stressing,
owever, that there is generally a lower limit on how close the sensors
ay be separated before the state-space model loses observability. As

he sensor separations decrease, there is an increasing risk that the
easured phase differences all become zero, meaning there is no longer

ny guarantee that the UKF algorithm will find the correct solution.
owever, it is difficult to quantify the minimum sensor separation as it
epends on the sensor sampling rate and speed/frequency of the waves
assing through the sensors. Since the sampling rate is considered
ixed for the system, a speed/frequency will always exist where the
aves will appear without delay in all sensors, irrespective of the
iven sensor separation. Hence, the sensor separations should not be
onsidered a fixed universal quantity but rather tunable parameters
hat can be adapted to different wave conditions. For instance, one
ossible strategy is to consider different sets of sensor separations, each
f which should be applied depending on the measured wave frequency

5 This value was obtained by evaluating Eq. (15) with 𝛽 = 0◦∕180◦ and
𝐿 = 2.58 m, equating it with 𝜆 = 2𝜋∕𝑘, and finding corresponding the wave
eriod.
13

m

given by the FFT. However, a methodology based on such a strategy is
outside the scope of the present study and left as a potential application
for future work.

Observation (iii) can be understood by studying the effect of increas-
ing the wave period on the models (6) and (12). The phase difference in
Eq. (12) is proportional to the wave number, which, in turn, is inversely
proportional to the wave period. Thus, as the wave period increases, the
predicted phase difference generally decreases towards zero (Fig. 7).
The effect of increasing the wave period on the angular rates and
accelerations in Eq. (6) can be understood by considering the vessel roll
and pitch responses in regular waves, which, for an underway vessel,
can generally be expressed as

𝜙(𝑡) = 𝐴𝜙 sin(𝜔𝑒𝑡 + 𝜖𝜙),

𝜃(𝑡) = 𝐴𝜃 cos(𝜔𝑒𝑡 + 𝜖𝜃),
(36)

here 𝐴𝜙 and 𝐴𝜃 denote the roll and pitch amplitudes, 𝜔𝑒 is the
ave encounter frequency, and 𝜖𝜙 and 𝜖𝜃 represent the phase shifts.
ssuming that the boat heading is fixed (i.e., �̇� = 0), the angular rates
and 𝑞 can be written mathematically as 𝑝 = �̇� and 𝑞 = �̇� cos(𝜙) (Fossen,
021). Computing the time derivatives of Eq. (36) we see that the
mplitudes of 𝑝 and 𝑞 depend directly on 𝜔𝑒. Hence, as the wave
eriod increases, the angular frequencies 𝜔 and 𝜔𝑒 will be driven to
ero, further implying that 𝑝, 𝑞, �̇�, and �̇� will also converge to zero.
he latter result makes intuitive sense as, for very long waves, the
essel will appear to oscillate up and down vertically, with little roll
nd pitch motion, causing the measurements in each sensors to be
lmost identical (i.e., zero phase difference). Therefore, it is clear that
ncreasing the wave period will cause both models (6) and (12) to
onverge to zero, which, in turn, implies that the corresponding error
etween them will behave in a similar fashion.

Unfortunately, due to the size of the wave tank, it was not possible
o assess the validity of Assumption 1 for other boat headings in
orward speed. Nevertheless, we carried out similar experiments in
egular waves for the stationary case (i.e., 𝑈 = 0 m∕s) with boat
eadings {0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦} and obtained similar results.
ence, based on these experimental results, it is reasonable to conclude

hat Assumption 1 is valid.

.2.2. Experimental validation of Theorem 1
The experimental results associated with the set of phase differences

𝛩12, 𝛩13} (Tables 4 and 5) show that in 89% and 83% of experi-
ents considered with the original IMU setup, the wave encounter
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Table 4
Wave encounter angle results associated with the pairs of phase differences {𝛩12 , 𝛩13} and {𝛩24 , 𝛩34}, respectively, for wave periods 𝑇𝑝 = 1.5 s, 2.0 s, and
2.5 s and vessel speeds 𝑈 = 0.5 m∕s, 0.6 m∕s, and 0.7 m∕s in regular waves. The numbers represent the absolute error between the wave angle estimates (after
convergence) from our wave algorithm (Algorithm 3) and the true values. Numbers outside parentheses represent errors associated with the original sensor
configuration (Fig. 6(a)), where all results are based on physical IMU data. Numbers inside parentheses represent errors associated with a single physical
IMU. The latter errors were obtained by using the processed linear acceleration, angular rates, and angular acceleration of IMU 1 with the measurement
transformation (19) and the virtual sensor configuration in Fig. 6(b) to generate the other IMU measurements. The top and bottom tables show the results
for following sea (𝛽 = 0◦) and head sea (𝛽 = 180◦), respectively. All wave angle errors are given in degrees.

𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

{𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34}

1.5 s 4.92 (2.47) 7.26 (2.43) 1.34 (0.58) 1.15 (0.53) 3.94 (2.32) 3.29 (2.40)
2.0 s 2.06 (1.77) 2.70 (1.77) 4.37 (2.35) 5.91 (2.31) 6.43 (2.35) 7.14 (2.27)
2.5 s 0.14 (2.06) 0.41 (2.05) 4.36 (3.36) 6.26 (3.35) 2.63 (3.75) 3.86 (3.75)

𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

{𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34}

1.5 s 1.74 (0.91) 3.02 (1.03) 0.17 (0.16) 1.10 (0.03) 4.14 (0.09) 4.58 (0.14)
2.0 s 0.49 (1.23) 0.63 (1.27) 3.60 (1.76) 4.38 (1.80) 2.60 (2.72) 2.28 (2.71)
2.5 s 1.91 (0.22) 1.97 (0.21) 6.70 (1.86) 6.87 (1.83) 2.24 (1.30) 2.06 (1.29)
Table 5
Wave number results associated with the pairs of phase differences {𝛩12 , 𝛩13} and {𝛩24 , 𝛩34}, respectively, for wave periods 𝑇𝑝 = 1.5 s, 2.0 s, and 2.5 s and
vessel speeds 𝑈 = 0.5 m∕s, 0.6 m∕s, and 0.7 m∕s in regular waves. The numbers represent the absolute error between the wave number estimates (after
convergence) from our wave algorithm (Algorithm 3) and the true values. Numbers outside parentheses represent the wave number errors associated with
the original sensor configuration (Fig. 6(a)), where all results are based on physical IMU data. Numbers inside parentheses represent the wave number errors
associated with a single physical IMU. The latter errors were obtained by using the processed linear acceleration, angular rates, and angular acceleration of
IMU 1 with the measurement transformation (19) and the virtual sensor configuration in Fig. 6(b) to generate the other IMU measurements. The top and
bottom tables show the results for following sea (𝛽 = 0◦) and head sea (𝛽 = 180◦), respectively. All wave number errors are given in m−1.

𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

{𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34}

1.5 s 0.17 (0.06) 0.40 (0.08) 0.09 (0.06) 0.46 (0.10) 0.10 (0.09) 0.48 (0.17)
2.0 s 0.02 (0.01) 0.14 (0.01) 0.10 (0.05) 0.13 (0.07) 0.07 (0.01) 0.14 (0.02)
2.5 s 0.02 (0.02) 0.03 (0.03) 0.05 (0.00) 0.07 (0.00) 0.04 (0.02) 0.08 (0.02)

𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

{𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34}

1.5 s 0.09 (0.00) 0.39 (0.08) 0.15 (0.06) 0.36 (0.04) 0.05 (0.07) 0.36 (0.08)
2.0 s 0.07 (0.04) 0.18 (0.05) 0.08 (0.07) 0.19 (0.08) 0.11 (0.11) 0.24 (0.11)
2.5 s 0.08 (0.05) 0.13 (0.05) 0.02 (0.03) 0.10 (0.02) 0.03 (0.06) 0.14 (0.06)
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angle and wave number errors are less than 5◦ and 0.1 m−1, respec-
tively.6 These numbers provide strong evidence in favor of Theorem 1
and extend previous findings by showing that the PTPD approach
is valid for underway vessels and not only stationary ones (Udjus,
2017; Heyn et al., 2017; Dirdal et al., 2022). Unfortunately, due to
the narrowness of the wave tank, it was not possible to assess The-
orem 1 for other boat headings in forward speed. We refer to our
previous work (Dirdal et al., 2022) for an assessment of Theorem 1 for
boat headings {0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦} in the stationary case
i.e., 𝑈 = 0 m∕s). It is worth mentioning that we have omitted the
esults for wave period 𝑇𝑝 = 1.0 s since Assumption 1 is violated for
hat period, as discussed in Section 4.2.1.

In contrast, the experimental results (Tables 4 and 5) also show that
or the set of phase differences {𝛩24, 𝛩34}, merely 83% and 22% of the

total wave encounter angle and wave number errors are within 5◦ and
.1 m−1, respectively. The significant difference in quality (especially
n the wave number) compared to the errors achieved using the set
𝛩12, 𝛩13} can be explained by a difference in the sensor positioning
f {𝑠1, 𝑠2, 𝑠3} and {𝑠2, 𝑠3, 𝑠4}. As discussed in Section 4.2.1, {𝑠4} is

displaced further from {𝑠2, 𝑠3} along the 𝑥𝑏 axis than {𝑠1}, resulting

6 For comparison, standard commercial radars such as Miros SM-050 and
iros Wavex report wave direction accuracies of 7◦ and 20◦ and wave period

ccuracies of 5% and 10%—see Table 6 for how these values affect the
ccuracy of the wave number and why 0.1 m−1 was selected as the accepted
rror threshold.
14

(

n a greater deviation between our phase difference model and the
ctual phase difference dynamics. Bringing {𝑠4} closer to the other
ensors reduces the deviation between the models, resulting in 100%
nd 94% of the wave encounter angle and wave number errors for
𝛩24, 𝛩34} being within 5◦ and 0.1 m−1 (Tables 4 and 5), respectively. It
s worth stressing that although the deviation can in theory be reduced
o zero by bringing the sensors very close, doing so in practice may
ompromise the observability of Eq. (13), as discussed in Section 4.2.1.

The wave number estimation results (Table 5) also demonstrate
nother interesting and beneficial fact: We can retain the absolute
requency (through the dispersion relation (21)) from shipboard IMU
easurements taken in the encounter frequency domain. This property

s particularly useful for beam to following sea conditions (i.e., 𝛽 ∈
−90◦, 90◦)) in which the wave encounter frequency generally does not
ossess a unique solution (Fig. 8). Due to the observability of our
tate-space model, our approach directly maps the phase differences
which are based on the encounter frequency) to the absolute frequency
omain, thereby circumventing the 1-to-3 mapping problem associated
ith underway vessels in following seas (Nielsen, 2017b, 2018).

.2.3. Experimental validation of Corollary 1.1
The experimental results (Tables 4 and 5) show that for a single

MU in 100% and 94% of experiments considered, the wave encounter
ngle and wave number errors are within 5◦ and 0.1 m−1, respectively.
hese numbers extend previous findings by showing that a single IMU

s sufficient, as opposed to three, as initially proposed in Dirdal et al.

2022). This result increases the practical utility of the PTPD approach



Ocean Engineering 288 (2023) 116131J.A. Dirdal et al.
Table 6
Theoretical wave number errors �̃� (unit m−1) resulting from a 5% and 10% error in the experimental wave periods 𝑇𝑝 (unit seconds). The wave number
errors were computed from Eq. (21) by adding and subtracting the percentage error to each respective wave period. In each calculation, the water pool
depth of the wave basin (𝑑 = 1.45 m) was considered. Based on these numbers, we consider 0.1 m−1 a reasonable error threshold to assess the quality
of the wave number estimation results.

𝑇𝑝 1.0 1.4 1.5 1.6 1.8 2.0 2.5

�̃�5% 0.40 0.20 0.17 0.15 0.11 0.09 0.05
�̃�10% 0.82 0.41 0.35 0.30 0.23 0.18 0.11
0

significantly as many vessels already employ IMUs as part of their
sensor suite, thus allowing the approach to be applied directly without
the need for installing additional units and time synchronizing the
measurements between them. It is worth emphasizing that the results
presented here are only valid for IMUs, which can measure angular
rates and specific force simultaneously—both of which Eq. (19) relies
on.

However, an important drawback of Eq. (19) is that it depends
on the angular acceleration �̇�𝑏𝑛𝑏, which is not usually measured. In
this work, we have obtained estimates of the latter through numerical
differentiation of 𝝎𝑏𝑛𝑏, which we argue is valid since each measurement
data segment has been lowpass filtered (see Section 3.1.2). The validity
of using numerical differentiation is further substantiated by our re-
sults, which are either similar in magnitude or outperform the results
based on multiple physical IMUs. It is worth mentioning that there
exist other methods for estimating �̇�𝑏𝑛𝑏 (Zappa et al., 2001; Kjerstad
and Skjetne, 2016); however, these rely on an array of (minimum) four
noncoplanar tri-axial accelerometers.

It is interesting to see that the wave estimates for {𝛩12, 𝛩13} from
a single IMU, in many cases, produce lower errors than for three
physical IMUs (Tables 4 and 5), despite the sensor coordinates being
(in theory) the same. We speculate that one of the reasons for this
behavior is that the application of Eq. (19) effectively eliminates any
bias resulting from uncertainties in the sensor positioning. As discussed
in Dirdal et al. (2022), uncertainties in the sensor positions can result
in significant errors in the phase differences, especially for higher
frequency waves. By employing Eq. (19) instead, the issues regarding
sensor positioning are conveniently circumvented, as any virtual sensor
coordinates specified as input to Eq. (19) represents the true location.

Up to now, we have used Eq. (19) to generate the minimum number
of measurements needed to determine the wave encounter angle and
wave number uniquely. However, it is worth pointing out that we
could use Eq. (19) to spawn any arbitrary number of measurements.
As discussed in Dirdal et al. (2022), increasing the number of phase
differences will reduce the error variance of the estimates, but only up
to a specific limit. Note that this will only work if the virtual sensor
locations are noncollinear (Theorem 1) and sufficiently close to each
other (Assumption 1).

4.2.4. Long-crested irregular waves
So far, we have established the theoretical foundation for determin-

ing the wave encounter angle and wave number from a train of regular
harmonic waves. However, in reality, ocean waves are irregular, typi-
cally characterized by many wave components differing in amplitude,
frequency, and wave direction. For long-crested irregular waves, each
constituent wave component has the same propagation direction, mean-
ing that it is, in theory, sufficient only to consider one such wave
component to infer the general propagation direction. Hence, if we
can extract only one wave component/frequency (e.g., using an FFT),
we can apply Theorem 1 and Corollary 1.1 to determine the wave
propagation direction of long-crested irregular waves from a single
IMU.

In order to assess the validity of the approach mentioned above,
two sets of experiments were conducted in the wave basin involving
a stationary and underway vessel, respectively, subjected to long-
crested irregular waves. In the stationary and forward speed trials, we

◦ ◦ ◦ ◦ ◦ ◦ ◦
15

considered the set of boat headings {0 , 30 , 60 , 90 , 120 , 150 , 180 }
Fig. 8. Encounter wave frequency (𝜔𝑒) vs. absolute wave frequency (𝜔) in following
waves (𝛽 = 0◦) computed by Eq. (22) with water depth 𝑑 = 1.45 m (results are
almost identical for increasing 𝑑) and forward vessel speeds 𝑈 = 0.5 m∕s, 0.6 m∕s, and
.7 m∕s to represent the test conditions of the wave basin. When 𝜔𝑒 < 1∕4𝜓 , where
𝜓 = 𝑈 cos 𝛽∕𝑔, the wave encounter frequency maps to three different (absolute) wave
frequencies. The latter situation applies for all our experiments conducted in following
waves with (absolute) wave periods 𝑇𝑝 = 1.5 s, 2.0 s, and 2.5 s.

and {0◦, 180◦}, respectively, with significant wave heights and peak
wave periods given in Table 2. The experimental results (Tables 7
and 8) show that in 92% of the forward speed trials and 79% of the
stationary trials, the wave encounter angle error is less than 5◦. If we
extend the error threshold to 10◦, all wave direction estimates except
one are within the latter. These results demonstrate that our phase
difference model can also be applied to long-crested irregular waves to
uniquely resolve the relative wave propagation direction from a single
IMU. The application of our approach to long-crested irregular waves
for stationary and underway vessels extends previous works (Udjus,
2017; Heyn et al., 2017; Dirdal et al., 2022), which are limited to a
stationkeeping vessel and regular waves, and whose results are based
on multiple physical IMUs.

Despite the good agreement between the wave direction results, the
same level of agreement is not seen for the wave number, which, for
underway and stationkeeping trials, yields 71% and 57% of errors less
than 0.1 m−1 (Tables 7 and 8), respectively. It is difficult to state with
certainty the exact reasons for the observed discrepancies; however, we
speculate that they are caused by a combination of (i) poor frequency
resolution in the FFT spectra, (ii) a growing mismatch between our
phase prediction model and the true vessel dynamics due to increased
angular vessel rates, and (iii) the UKF algorithm sometimes favoring a
low wave direction error at the expense of a high wave number error.
Each of these issues are addressed in the following paragraphs.

As mentioned in Section 4.1, the time duration of the recorded IMU
data was less than 40 s for the forward speed trials and less than
120 s for the zero speed trials. Time durations of such magnitudes
will invariably impact the attainable frequency resolution of the FFT
spectra. As discussed in Section 3.4.3, a poor frequency resolution will

make it more challenging to pinpoint the true frequency, causing it
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Table 7
Wave encounter angle and wave number results, 𝛽 and �̃�, respectively, from forward speed trials in following and head waves (i.e., 𝛽 = 0◦ and 𝛽 = 180◦) with vessel speeds
𝑈 = 0.5 m∕s, 0.6 m∕s, and 0.7 m∕s exposed to long-crested irregular waves with peak wave periods 𝑇𝑝 = 1.4 s, 1.6 s, 1.8 s, and 2.0 s. The numbers show the absolute error between
he wave estimates (after convergence) from our wave algorithm (Algorithm 3) and the true values by considering the set of phase differences {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} and
he virtual sensor configuration in Fig. 6(b). Note that in the results presented we have reduced the maximum frequency threshold in Algorithm 3 to 𝑓max = 0.6 Hz. The wave
ncounter and wave number errors are given in degrees and m−1, respectively.

𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

𝛽 = 0◦ 𝛽 = 180◦ 𝛽 = 0◦ 𝛽 = 180◦ 𝛽 = 0◦ 𝛽 = 180◦

𝛽 �̃� 𝛽 �̃� 𝛽 �̃� 𝛽 �̃� 𝛽 �̃� 𝛽 �̃�

1.4 s 0.19 0.47 1.95 0.03 0.37 0.49 7.44 0.05 2.28 0.08 6.35 0.06
1.6 s 0.39 0.15 0.14 0.06 0.40 0.24 0.47 0.15 4.18 0.71 2.30 0.01
1.8 s 1.88 0.06 0.05 0.06 1.68 0.12 1.86 0.05 2.93 0.00 0.19 0.09
2.0 s 0.11 0.06 0.11 0.02 0.91 0.02 4.61 0.02 3.13 0.07 2.40 0.06
Table 8
Wave direction and wave number results, 𝛽 and �̃�, respectively, from a stationary vessel exposed to long-crested irregular waves with peak wave period 𝑇𝑝 = 1.4 s, 1.6 s, 1.8 s,
nd 2.0 s and wave directions 𝛽 = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦. The numbers show the absolute error between the wave estimates (after convergence) from our wave
lgorithm (Algorithm 3) and the true values by considering the set of phase differences {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} and the virtual sensor configuration in Fig. 6(b). Note that in
he results presented we have reduced the maximum frequency threshold in Algorithm 3 to 𝑓max = 0.6 Hz. The wave direction and wave number errors are given in degrees and
−1, respectively.

𝑇𝑝 𝛽 = 0◦ 𝛽 = 30◦ 𝛽 = 60◦ 𝛽 = 90◦ 𝛽 = 120◦ 𝛽 = 150◦ 𝛽 = 180◦

𝛽 �̃� 𝛽 �̃� 𝛽 �̃� 𝛽 �̃� 𝛽 �̃� 𝛽 �̃� 𝛽 �̃�

1.4 s 1.89 0.20 3.45 0.03 2.06 0.26 2.46 0.01 3.85 0.05 6.51 0.08 0.87 0.17
1.6 s 0.92 0.24 7.56 0.01 1.72 0.42 3.83 0.08 3.14 0.19 10.47 0.06 0.18 0.10
1.8 s 1.57 0.11 6.91 0.28 4.00 0.11 2.90 0.13 3.55 0.22 5.56 0.06 0.90 0.07
2.0 s 0.41 0.10 3.10 0.04 3.13 0.09 2.92 0.06 2.80 0.01 9.58 0.14 0.92 0.02
o

to fall between two frequency bins and ultimately affecting the phase
response. In order to improve FFT resolution, a longer FFT length
must be considered, which may be fulfilled by increasing the duration
of the measured data or by various interpolation techniques such as
zero-padding.

Inspecting the wave estimation errors in Table 8 closely, it is clear
that the most significant wave direction and wave number errors are
associated with the experiments in which 𝛽 = 30◦, 60◦, 120◦ and 150◦.
n those experiments, we expect the angular rates of the body to be
uite high due to the vessel roll and pitch responses being active and
arge simultaneously (the waves are approaching the vessel diagonally
s opposed to straight on or from the side). An increase in the angular
ates will cause a growing mismatch between our phase prediction
odel and the actual phase difference dynamics. As discussed in Sec-

ion 4.2.1, this mismatch can generally be reduced by tuning the sensor
eparations such that the virtual sensor positions become sufficiently
lose.

The issues raised above will manifest themselves as errors in the
stimated phase differences. These errors tend to be reflected more
n one of the wave quantities than the other and less often in both
imultaneously. In other words, when significant errors are present,
he UKF algorithm seems to favor a lower estimation error in one of
he wave quantities at the expense of a higher error in the other. In
rder to assess this speculation, we have conducted a small simulation
tudy investigating how individual estimation errors are affected by the
KF for a range of wave directions and frequencies when significant
rrors in the phase differences are present. In addition to confirming
he speculation above, the results (Fig. 9) also show that the wave
umber error is generally more sensitive to changes in the wave period
compare the magnitudes of the wave direction and wave number
rrors in the plots in Fig. 9). This behavior can explain some of the
pposing wave estimation results in Tables 7 and 8 and, in particular,
hy the wave number error in some cases appears to be affected more

han the corresponding wave direction error.
It is worth mentioning that in the results presented (Tables 7 and 8),

e have reduced the maximum frequency threshold 𝑓max in Algorithm
, which produced better results. As we have seen, lower frequencies
longer wave periods) tend to produce more accurate wave estimates
ue to a reduction in the angular rates of the body, thus yielding less
16

n

mismatch between our model and the actual vessel dynamics. However,
by reducing the frequency threshold, our algorithm may effectively
select a frequency different from the spectrum’s peak frequency. This
operation poses no issue for long-crested seas as each wave component
propagates in the same direction. However, for more short-crested
seas where multiple propagation directions may exist, care must be
exercised to maintain the frequency threshold so that the desired peak
wave frequency and direction are addressed.

5. Full scale experiments

5.1. Experimental design

During spring 2022, an experimental campaign was carried out with
the NTNU-owned research vessel Gunnerus (Fig. 10) in the vicinity of
Ålesund, a small coastal city on the west coast of Norway, to collect
full-scale IMU data in various sea states and to assess the practicality of
our proposed PTPD method. The research vessel Gunnerus is equipped
with an advanced dynamical positioning system and many other instru-
ments, making it an excellent platform for measuring waves at zero and
forward speed.7

5.1.1. Campaign description
The field experiments were conducted over the course of two days.

On each of these days, experiments involving zero and forward speed
were, respectively, considered. The zero-speed trials were carried out
in two distinct locations (Fig. 11(a)) in which the vessel was exposed to
open and sheltered waters, respectively. At each location, four heading
angles were considered by orienting the vessel into the waves (head
sea) and subsequently adjusting the heading angle by 30◦. Each heading
angle and vessel position was maintained for approximately 40 min by
the dynamical positioning system onboard. However, the duration of
some experiments is shorter since the data logging system had to be
restarted for some experiments, resulting in a loss of data. The forward

7 For more information and details about the vessel and the equipment
nboard, the reader is referred to the official Gunnerus website: https://www.
tnu.edu/oceans/gunnerus.

https://www.ntnu.edu/oceans/gunnerus
https://www.ntnu.edu/oceans/gunnerus
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Fig. 9. Wave direction and wave number estimation results from our UKF algorithm (Algorithm 2) based on simulated phase differences with added random Gaussian noise. The
phase differences were simulated using Eq. (12) with the sensor configuration in Fig. 6(b) and adding random Gaussian noise with mean 10◦ and standard deviation 5◦ to the
computed values. The set of phase differences {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} were considered in the simulation together with wave periods 𝑇𝑝 = 1.4 s (left) and 𝑇𝑝 = 2.0 s (right). The
plots show the absolute error between the wave estimates (after convergence) and the true values. The wave direction error is given in degrees, whereas the wave number error
is given in m−1 but multiplied by a factor of 100 to better highlight the overall trend.
Fig. 10. The research vessel Gunnerus considered in the full-scale experiments.

speed trials consist of a single experiment in head sea (Fig. 11(b))
lasting approximately 6 min. The short time duration and the limited
number of trials for forward speed were due to ship operational issues.

5.1.2. IMU system and sensor configuration
Our data logging system comprises five ADIS16465 high-precision

microelectric mechanical system (MEMS) IMUs (each of which includes
a tri-axial accelerometer and gyroscope), a GPS receiver, a solid state
drive, and a synchronization unit (Fig. 12). The IMUs and GPS receiver
are all connected to the synchronization unit, which performs the
synchronization of measurements using PPS time synchronization. All
communication between the IMU nodes is done serially through the
SPI protocol via cables of length 20 m. For all experiments, the IMU
sampling rate was set to 100 Hz. We consider this sampling rate
sufficient, as it is twice the rate used for the wave tank experiments
as well as much higher than the bandwidth of wind-generated ocean
waves.

The IMUs were rigidly attached to the vessel by clamping them onto
the metal bars running across the roof of Gunnerus using screw clamps
(Fig. 13). The metal bars run laterally across the vessel, making them an
excellent reference to ensure that the gyroscope/accelerometer 𝑥-axis of
each IMU is aligned with the vessel’s longitudinal axis (thus minimizing
17
potential misalignment errors). The distances between the IMUs were
measured using a laser distance measure tool relative to a common and
known reference point on the vessel.

The IMU configuration considered in experiments is illustrated in
Fig. 14. The IMU array is noncollinear and coplanar. The former is
necessary to ensure that the state-space model (13) is observable,
whereas the latter reduces the deviation between Eqs. (11) and (12)
when 𝑧𝑖𝑗 = 0 (see Appendix). The sensor positions were deliberately
chosen to be near each other for three reasons. First, as established in
Section 4.2.1, Assumption 1 is valid when the sensors are sufficiently
close to each other. Second, the rigid-body assumption is preserved
more for smaller regions on the vessel than positions on opposite ends
(e.g., bow and stern), which are more susceptible to bending and other
forms of deformation. Third, no other locations were as suitable as the
roof for measuring distances and fastening the sensors to the vessel
(drilling into the vessel to attach the sensors was not permitted).

The gyroscope and accelerometer sensor biases were assumed con-
stant for the duration of each processed data segment. This assumption
is substantiated by the gyroscope and accelerometer Allan variance
curves found in the ADIS16465 datasheet, which states that for a 6 min
integration period (the considered window length of each data segment;
see Section 5.2.1 for discussion), the gyroscope and accelerometer
in-run bias stability are less than 2◦∕hr and 4.5 μg, respectively.

5.1.3. Wave direction reference systems
Gunnerus possesses a commercial wave radar system comprising

a Furuno X-band marine radar and a Miros Wavex computer. The
Miros computer processes the raw Furuno radar images of backscat-
tered light reflected off the sea surface to produce estimates of the
directional wave spectrum. In the following results, we consider the
main/dominant wave direction estimated by the wave radar system as
the ground truth reference value. Moreover, we consider the accepted
wave direction error threshold to be 20◦ when evaluating the perfor-
mance of our wave estimation algorithm, as this number is the wave
direction accuracy reported by the Miros Wavex system.

Some of the zero-speed experiments were performed near a Fugro
Seawatch Wavescan buoy (Fig. 11(a)) owned and administered by the
Norwegian Public Roads Administration, who has made the buoy data
available to the public (Furevik et al., 2016). The buoy measures almost
everything related to the sea surface, including directional information,
rendering it an additional useful reference for wave assessment. Com-
pared to the wave radar system, however, the update rate of the buoy
is significantly lower, with updates given every 10 min as opposed to
1 min for the wave radar.
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Fig. 11. The zero-speed trials were conducted in two distinct locations: Breidsundet (Location 1) and Sulafjorden (Location 2). The forward speed trials comprise only one
experiment because of ship operational issues, bringing the campaign to an abrupt end. Several directional wave rider buoys are stationed in the region, which the Norwegian
Public Roads Administration operates. The wave conditions during experiments were relatively moderate, with significant wave heights generally less than 1.5 m.
Fig. 12. Our data logging system comprises five IMUs, a GPS receiver, a solid state
drive, and a synchronization unit.

5.2. Results and discussion

In this section, we present and discuss the results from our PTPD
approach when applied to full-scale experimental IMU data. All the
wave radar and wave buoy values of the wave direction have been
transformed to the wave tangent frame (Fig. 3) to be commensurate
with the wave direction estimates given by our algorithm. The wave
direction results are shown between 0◦ and 360◦ to avoid rapid jumps
for values in proximity to 180◦. For stationkeeping vessels, the wave
number estimate is not particularly interesting as it is implicitly es-
timated by Algorithm 1 through the peak wave frequency used to
generate the desired phase differences (we can use this frequency to
calculate the wave number directly based on the dispersion relation for
deep waters). For this reason, we consider the wave number redundant
and have consequently omitted it from the zero-speed results.

The length and breadth dimensions of Gunnerus are 36.25 m and
9.90 m, respectively. Substituting these values into Eq. (20) with 𝑑
arbitrarily large (deep waters) yields the maximum frequency threshold
𝑓max = 0.2 Hz. The latter value is substituted into Eq. (23) for the
forward speed trials to get the adjusted frequency threshold 𝑓e,max
when the vessel moves with speed 𝑈 .
18
5.2.1. Zero speed
The zero-speed experiments were conducted in two distinct loca-

tions (Fig. 11(a)) to assess the performance of our proposed method
in two different sea states. Following the sea state code definitions
by Price and Bishop (1974), the observed sea states in Location 1 and
2 were moderate and slight, with significant wave heights generally
between 1.2−1.4 m and 0.7−0.8 m, respectively. The incident waves in
Location 1 are generally larger than Location 2 as they come directly
from the open sea, unobstructed by any landmass. In both locations,
the swell was heavily dominant compared to the local wind.

Our experimental results (Figs. 15 and 16) show that in both loca-
tions, the estimates of the relative wave direction from our proposed
method are generally very close to the corresponding values reported
by the wave radar and wave buoy systems. Quantitatively, 91% and
71% of the total estimation errors are less than 20◦ and 10◦, respec-
tively, for the physical sensor configuration and, correspondingly, 92%
and 70% for the virtual sensor configuration based on a single IMU.
In addition to the high accuracy, the similarity of results between
the physical and virtual sensor configurations further demonstrates
that only a single IMU is indeed sufficient, thus rendering multiple
physical IMUs redundant. This important result significantly increases
the practical usefulness of our proposed method in addition to being
accurate, cheap, portable, flexible, easy to install, and robust against
various environmental conditions. In contrast, de facto standard wave
buoy and wave radar systems are expensive and suffer from either being
geographically confined, less flexible to changes, difficult to install
(without expert help), and in some cases, sensitive to the external
environment. For instance, during data collection, there were several
losses from the wave radar due to precipitation and interference with
the surrounding landmass (Fig. 16).

We suspect that uncertainties in the phase differences resulting from
the FFT are likely one of the main culprits behind some of the observed
deviations between the estimation results and the ground truths. By
relying on the FFT, a compromise must be made between time and fre-
quency resolution, which, in turn, translates to a compromise between
real-time performance and accuracy—both of which must be present for
practical feasibility. The compromise is reflected quantitively through
the window length and percentage overlap between consecutive data
segments, which for the presented results, were chosen after trial
and error as 6 min and 50%, respectively. Collectively, these values
produce estimate updates every third minute after initialization, which
we consider a reasonable compromise between real-time performance
and accuracy.

In the results presented, we reduced the frequency threshold to
0.13 Hz, which produced better results (recall that longer wave periods
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Fig. 13. The IMUs and GPS receiver were clamped to the roof of Gunnerus using screw clamps and connected to the synchronization unit, which was placed downstairs inside
the bridge.
Fig. 14. IMU array considered in the full-scale experiments. IMUs 1, 2, 3, 4, and 5 are denoted 𝑠1, 𝑠2, 𝑠3, 𝑠4, and 𝑠5, respectively. The location of each sensor is given in meters
with respect to the vessel body frame {𝑏}. The origin of {𝑏} is indicated by a cross, where the 𝑧𝑏-axis (not shown) points down into the page. We have used the same configuration
for the virtual sensor locations with IMU 1 considered as the only physical sensor. The virtual measurements from the other ‘‘sensors’’ were obtained by employing the measurement
transformation (19) together with the processed linear accelerations, angular rates, and angular accelerations of IMU 1.
generally reduce model mismatch). As discussed in Section 4.2.4, such
an adjustment is generally acceptable for unimodal seas where all
wave components have the same propagation direction. Indeed, this
was the case for both locations, which were largely swell-dominant.
However, for a bimodal sea state consisting of swell and local wind-
generated waves, our method (if left unmodified) will return the main
wave direction and wave number corresponding to the most prominent
wave system, assuming the wave systems are clearly distinguishable.
This result follows from the current implementation of the method (see
Algorithm 3), which assumes a single mode and concludes after finding
the frequency associated with the largest peak. It is worth noting that
if all the modal frequencies are known, the PTPD approach can be
extended to work in multimodal environments by applying the method
recursively for each modal frequency. The main challenge, however, is
to identify the frequency of each unique mode in the heave acceleration
spectrum. The latter can be achieved through various peak detection
algorithms such as findpeaks() in MATLAB or more advanced
techniques based on wavelet analysis (Du et al., 2006).

5.2.2. Forward speed
As mentioned earlier, the forward speed trials were abruptly ended

due to ship operational issues shortly after commencing the first
19
trial. For this reason, we consider the only forward speed experiment
recorded that day, which lasted approximately 6 min. Despite the
short duration, the results (Fig. 17) show great promise—91% of wave
encounter angle errors and wave number errors are less than 20◦

and 0.01 m−1, respectively, for the physical sensor configuration and,
correspondingly, 82% and 73% for a single IMU. The wave number
errors are particularly interesting as they suggest that it is indeed
possible to retain the absolute wave frequency directly while moving
with constant forward speed. Unfortunately, we were not able to test
the latter in following sea conditions, thereby potentially circumventing
the 1-to-3 mapping problem existing between encounter frequency and
absolute frequency domains (Nielsen, 2017b, 2018).

6. Conclusions and further recommendations

A relatively new and exciting signal-based approach using the
phase-time-path-differences (PTPDs) between a shipboard array of sen-
sors to retrieve directional wave information has been explored in this
study. We derived a new kinematic PTPD model accounting for forward
vessel speed, thus generalizing the PTPD concept further to moving
vessels. The theoretical foundation of this model in terms of modeling
sensor delays on a rigid body was carefully assessed, and it was shown
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Fig. 15. Relative wave direction estimation results from our wave algorithm (Algorithm 3) from Location 1 (moderate sea with significant wave heights 1.2 − 1.4 m and water
epth 339 m) for four different boat headings corresponding to head, bow, and beam seas. The estimates from the physical sensor configuration are indicated by crosses (blue),
hereas the estimates from the virtual sensor configuration based on IMU 1 (Fig. 14) are indicated by plus signs (red). The corresponding wave direction values reported by the
ave radar and wave buoy D are represented by dots (pink) and squares (green), respectively. The histograms next to each plot show the corresponding absolute error count for
ifferent error intervals for both sensor configurations (real and virtual). The wave radar values are considered as ground truth except for the bottom plot where it was mistakenly
ff and turned on again after 39 min. Hence, until 36 min, the wave buoy values were considered as reference. For each wave direction estimate (cross or plus sign), comparison
as made with the ground truth by considering the value closest in time. All wave directions are given between [0◦ , 360◦) as the positive counterclockwise angle from the 𝑥-axis

of the wave tangent frame to the vessel body 𝑥𝑏 axis (Fig. 3). The window size, segment overlap, and frequency threshold 𝑓max were set to 6 min, 50%, and 0.13 Hz, respectively.
p
a
a
b
a
w
i

hat the model’s accuracy relies on sufficiently short sensor separations
nd sufficiently long waves. Based on this theory and PTPD model,
e proposed a methodology to resolve the wave propagation direction
nd wave number online from an array of IMUs and a single IMU by
mploying a rigid body measurement transform, an FFT, and a UKF.
ur methodology incorporates a novel frequency threshold based on

he main ship dimensions to avoid distorted wave components caused
y vessel lowpass filtering. The wave estimation capabilities of our
20

u

roposed method were tested on IMU data collected from a wave tank
nd full-scale experiments involving a research vessel equipped with
commercial wave radar operating in the proximity of several wave

uoys outside the coast of Norway. The estimation results generally
greed very well with the reference wave values reported from both
ave measurement systems, demonstrating that a single physical IMU

s sufficient. Together, these results significantly increase the practical
tility of the PTPD approach, rendering it a serious contender to other
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Fig. 16. Relative wave direction estimation results from our wave algorithm (Algorithm 3) from Location 2 (slight sea with significant wave heights 0.7 − 0.8 m and water depth
442 m) for four different boat headings corresponding to head, bow, and beam seas. The estimates from the physical sensor configuration are indicated by crosses (blue), whereas
the estimates from the virtual sensor configuration based on IMU 1 (Fig. 14) are indicated by plus signs (red). The corresponding wave direction values reported by the wave
radar are represented by dots (pink). The histograms next to each plot show the corresponding absolute error count for different error intervals for both sensor configurations (real
and virtual). For each wave direction estimate (cross or plus sign), comparison was made with the wave radar by considering the value closest in time. In the bottom plot, the
wave radar dropped out due to significant interference with the surrounding landmass. For this reason, the remaining comparison with the other wave estimates was made based
on the last recorded wave radar value. All wave directions are given between [0◦ , 360◦) as the positive counterclockwise angle from the 𝑥-axis of the wave tangent frame to the
vessel body 𝑥𝑏 axis (Fig. 3). The window size, segment overlap, and frequency threshold 𝑓max were set to 6 min, 50%, and 0.13 Hz, respectively.
shipboard signal-based approaches in terms of accuracy and online
performance while being cheap, flexible, easy to install, and robust
against environmental influences.

As hinted in Section 5.2.1, our wave estimation procedure is cur-
rently limited by the FFT, which forces a trade-off between real-time
performance and accuracy. In order to increase practical utility further,
future studies should seek to optimize the estimation procedure by
considering alternative methods to the FFT that are less stringent on
21
the trade-off above. In this regard, there are, in particular, two ap-
proaches worth examining in greater detail, namely, the Hilbert-Huang
transform (HHT) and a real-time phase difference tracking filter (Chen
et al., 2019). The former approach can yield instantaneous frequency
and phase information for non-stationary data, whereas the latter yields
the same information in real time but is based on a single sinusoid. A
comparison between these approaches (and potential others) and the
FFT is left as an application for further studies.
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Fig. 17. Relative wave encounter angle and wave number estimation results from our wave algorithm (Algorithm 3) in head sea (moderate sea with significant wave height ∼ 1.3
and water depth 439 m) with forward vessel speed 𝑈 = 10.8 knots (Fig. 11(b)). The estimates from the physical sensor configuration are indicated by crosses (blue), whereas

he estimates from the virtual sensor configuration based on IMU 1 (Fig. 14) are indicated by plus signs (red). The corresponding wave direction values reported by the wave
adar and wave buoy (A and D) are represented by dots (pink) and squares (green), respectively. The buoys A and D report the same wave direction and low frequency mean
ave period, which has been converted to wave numbers using the dispersion relation (21) for deep waters, and are shown as squares (green) in the wave number plot. The
istograms next to each plot show the corresponding absolute error count for different error intervals for both sensor configurations (real and virtual). The wave radar and wave
uoy values are considered reference for the wave encounter angle and wave number, respectively. For each wave estimate (cross or plus sign), comparison was made with the
round truth by considering the value closest in time. A dashed line has been extended between the wave buoy values to make comparison easier. All wave directions are given
etween [0◦ , 360◦) as the positive counterclockwise angle from the 𝑥-axis of the wave tangent frame to the vessel body 𝑥𝑏 axis (Fig. 3). The window size and segment overlap
ere set to 1 min and 50%, respectively. The frequency threshold was selected as the maximum default value based on the vessel length and beam dimensions.
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The results from the forward speed trials presented in this work
re promising but limited from further generalization due to the size
f the wave basin (inhibiting other heading angles from being tested)
nd operational issues onboard RV Gunnerus. For this reason, future
nvestigations should aim for additional forward speed testing in head,
ow, beam, quartering, and following sea conditions to further validate
ur theory and proposed methodology. In particular, additional exper-
mentation in beam to following seas is of interest to show that our
pproach can directly obtain the absolute true wave frequency, thereby
ircumventing the 1-to-3 mapping problem generally existing between
he encounter and absolute frequency domains.

One of the conditions for the PTPD approach to model sensor delays
n a rigid body is that the sensor separations be sufficiently close.
owever, a too-small sensor separation combined with the (fixed and

inite) sensor sampling rate increases the risk of all measured phase
ifferences becoming zero, resulting in a loss of observability of our
tate-space model. This phenomenon can happen for any given sensor
onfiguration, provided that the propagation speed of the considered
aves is sufficiently high. Hence, what constitutes a minimal sensor

eparation depends on the wave conditions, and finding a lower bound
n the separation distance for all situations is difficult. We leave this
s a potential topic for future inquiry.

In this study, the primary wave environment considered for prac-
ical assessment of the PTPD approach has been long-crested irregular
aves. It is important to note that the PTPD method can be extended

o work in more short-crested wave environments featuring multiple
odes by recursively applying the method to each modal frequency.

dentifying these modal frequencies, for instance through various peak
etection algorithms based on wavelet analysis, is beyond the scope of
he present study.
22
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ppendix. Model error analysis

In this section, the model deviations between the time-varying
nd average phase difference models, (11) and (12), respectively, are
uantitatively assessed for different wave parameters and roll-pitch
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Fig. A.18. For each experimental wave period 𝑇𝑝 and wave direction 𝛽, the absolute value of the mean error (top) and corresponding standard deviation (bottom) for all phase
differences are shown in different colors. The mean error is computed by 1∕𝑁

∑
(

(11)–((12))
)

for a total of 𝑁 roll and pitch samples based on the sensor configuration in Fig. 6(a),
which for four sensors yields a total of six independent phase differences {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34}. In all experiments, the roll and pitch response amplitudes were scaled to
simulate the worst-case conditions of the pool experiments in Section 4. For 𝛽 = 0◦, the pitch response amplitude was scaled to 5◦ and, for 𝛽 = 90◦, the roll response amplitude
was scaled to 10◦. For 𝛽 = 30◦ and 60◦, both the roll and pitch responses were scaled to 10◦ and 5◦, respectively.
responses. To carry out such an assessment, we consider roll and pitch
data from a model ship in regular waves with periods {1.0 s, 2.0 s} and
relative wave directions {0◦, 30◦, 60◦, 90◦}. The roll and pitch responses
have been scaled to even larger amplitudes to see how increasingly
rougher seas may impact the model differences. As we shall see, the
model deviations are directly affected by the vessel roll and pitch offset,
the height separation between the sensors onboard, and the period of
the waves passing through the vessel. The experimental data considered
in this analysis were collected as part of the Master’s thesis of Udjus
(2017).

A.1. Simulation results

The simulation results (Fig. A.18) show the total mean error be-
tween Eqs. (11) and (12) and the corresponding standard deviation
computed from each roll-pitch sample for the duration of the consid-
ered responses. In the computation of these errors, the sensor configu-
ration in Fig. 6(a) was considered, which consists of four sensors and
gives access to a total of six independent phase differences in each
experiment. The wave number was computed through the dispersion
relation in (21), assuming a water depth of 1.5 m.

The following observations are made from the mean model errors
and standard deviations in Fig. A.18:

(i) The mean model error for each phase difference is less than 1◦

for all experiments.
23
(ii) The standard deviation of each phase difference associated with
sensor 4 is significantly larger than the rest.

(iii) The mean model error and standard deviation decrease for in-
creasing wave periods.

Observations (i) and (ii) are discussed in the subsequent subsections,
respectively. The downscaling effect (iii) is caused by the wave number
𝑘, which is inversely proportional to the wave period. Hence, longer
waves imply smaller errors than shorter waves and vice versa.

A.2. Roll and pitch asymmetry

Regarding (i), we repeated the same simulations with roll and pitch
responses scaled to 30◦ and 10◦, respectively, and observed similar
results (i.e., all errors were less than 1◦). These results show that the
average phase difference model is more or less independent of roll-pitch
amplitude, thus eliminating the need for the small-angle assumption
considered in our previous work (Dirdal et al., 2022).

However, if the roll and pitch responses can be asymmetric (e.g., due
to uneven loading conditions and/or manufacturing errors), the av-
erage roll and pitch angles may no longer be centered close to zero
(i.e., �̄�(𝑡) = 𝜙0 ≠ 0 and �̄�(𝑡) = 𝜃0 ≠ 0). If these offsets are left
unaccounted for, they may cause a bias between the considered phase
difference models (Fig. A.19). However, if the roll and pitch offsets are
known, the deviation can be alleviated by inserting these values into
Eq. (11) and applying this average model instead.
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Fig. A.19. Repeated mean model error simulation for wave period 𝑇𝑝 = 1.0 s (Fig. A.18)
but with an offset value of 2◦ added to all roll and pitch responses.

A.3. Sensor height separation

A significant sensor height separation will amplify any differences
between the considered phase difference models due to the latter
term in the RHS of Eq. (11). When the roll and pitch responses are
symmetric about zero, this amplification effect is manifested mainly in
the standard deviations of mean model errors (Fig. A.18). However,
if the roll and pitch responses are asymmetric about zero, the sensor
height separation may also influence the mean model error (Fig. A.19).
This amplification effect can be mitigated by only considering coplanar
sensor measurements (i.e., all sensors on the same plane).
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