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A B S T R A C T

In this systematic literature review, we examine the existing studies predicting realized volatility and implied
volatility indices using artificial intelligence and machine learning. We survey the literature in order to discover
whether the proposed methods provide superior forecasts compared to traditional econometric models, how
widespread the application of explainable AI is, and to outline potential areas for further research. Generally,
we find the efficacy of AI and ML methods for volatility prediction to be highly promising, often providing
comparative or better results than their econometric counterparts. Neural networks employing memory, such
as Long–Short Term Memory and Gated Recurrent Units, consistently rank among the top performing models.
However, traditional econometric models are still highly relevant, commonly yielding similar results as more
advanced ML and AI models. In light of the success with ensemble methods, a promising area of research
is the use of hybrid models, combining machine learning and econometric models. In spite of the common
critique of many machine learning models being of a black-box nature, we find that very few papers apply XAI
to analyze and support their empirical results. Thus, we recommend that researchers strive harder to employ
XAI in future work. Similarly, we see potential for applications of probabilistic machine learning, effectively
quantifying uncertainty in volatility forecasts from machine learning models.
1. Introduction

Due to significant growth in the use of artificial intelligence and
machine learning techniques in the recent years, there has been an
equally growing interest in applications within prediction and fore-
casting of volatility using these methods. Volatility is a complex and
dynamic phenomenon of interest to many stakeholders within finance
and economics. Reliable volatility forecasts are important tools for
these stakeholders in anticipating changes in market conditions to
which they can adapt accordingly. For example, accurate volatility
forecasts may help a fund manager to reduce their exposure to potential
markets risks, by reducing their positions in assets that are likely to
be affected by increased volatility or by hedging their positions using
derivatives. Volatility is also an important factor in determining the
value of such derivatives. Furthermore, risk managers may utilize accu-
rate volatility forecasts to compute more precise Value at Risk (VaR)1

measures. Traders can use accurate forecasts to make more informed
decisions about when to enter and exit positions in financial markets.
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For instance, the low volatility during the summer of 2022 have caused
traders large losses and stresses the importance of high conviction of
volatility movements (Tsekova & Popina, 2022). Finally, governments
and institutions can benefit from accurate volatility forecasts to assess
the volatility and its impacts on the economy to make effective policy
decisions regarding monetary and regulatory policy.

Estimating and forecasting volatility is complex, since volatility
itself is a latent variable. Realized volatility, inferred from the sum
of squared intradaily high-frequency returns, have since the seminal
contribution of Andersen et al. (2001a), been considered the most
appropriate representation of the true, unobservable integrated vari-
ance. While realized volatility is inherently backward-looking, implied
volatility can be interpreted as the risk-neutral expectation of volatility.
Implied volatility is an important determinant of option prices and
is particularly appealing for forecasting purposes, due to its forward
looking nature.

Machine learning has found applications across the banking and
finance industry; often attributed to emergence of big data, access to
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computing power and scalable statistical software. Machine learning
is fundamentally different to traditional econometrics with regards to
assumptions about the true data generating process. The former typi-
cally assumes data to be generated by some stochastic process, whereas
the latter treats the data mechanism as unknown. Hence, the flexible
nature of machine learning algorithms enables them to handle complex,
non-linear dynamics in a model free framework, possibly encompassing
highly correlated predictors and structured datasets. This has sparked
interest in machine learning for volatility forecasting applications.

Over the last couple of years, there have been several literature
reviews which study various deep learning-based neural network ap-
proaches for stock market forecasting, which mainly focuses on stock
price prediction (Jiang, 2021; Thakkar & Chaudhari, 2021), while Sezer
et al. (2020) studies financial time series forecasting in general, using
deep learning. Henrique et al. (2019) and Kumbure et al. (2022)
focus on machine learning approaches for various financial market
predictions. Furthermore, Bustos and Pomares-Quimbaya (2020) focus
on stock market movement prediction. Common for all the mentioned
reviews is that volatility forecasting is either minor part of the scope, or
not present. Poon and Granger (2003) conducted an early review con-
cerning volatility forecasting in financial markets, but due to the more
recent popularity and boom within machine learning and artificial
intelligence, such approaches are not considered in that review.

The important foundation we know today about volatility forecast-
ing originates from how known stylized facts about asset returns were
incorporated in parameterized models. The autoregressive conditional
heteroscedasticity (ARCH) model of Engle (1982), further developed
by Bollerslev (1986) to the Generalized-ARCH (GARCH), which mod-
els the conditional variance as dependent on yesterday’s disturbance
term as well as yesterday’s conditional variances. These were further
extended in various forms to include asymmetric behavior and leverage
effects, see for example Nelson (1991) and Glosten et al. (1993). En-
gle et al. (2013) introduced a family of univariate GARCH-models
using Mixed Data Sampling Frequency (MIDAS) filters for inclusion
of additional variables in order to both capture short- and long-term
effects.

The availability of high frequency data has lead to more accurate
volatility estimation such as realized volatility (RV), see Appendix A.
The realized volatility proxy has no model-based relationship between
the time periods, like the conditional variance, and thus can be mod-
eled directly using for example autoregressive models. Inspired by the
heterogeneous market hypothesis, Corsi (2009) utilized realized volatil-
ity to create a heterogeneous autoregressive model, see Appendix B.
The availability of high-frequency data and realized volatility also
motivated new extensions of the GARCH-model, such as the Realized-
GARCH by Hansen, Huang et al. (2011). Alternative volatility measures
such as implied volatility have together with realized volatility moti-
vated alternative approaches for volatility forecasting, such as machine
learning and AI. Malliaris and Salchenberger (1996) developed a neural
network to forecast implied volatility where it was estimated in a
similar manner as the well known CBOE Volatility Index (VIX). The
VIX is a measure of the expected volatility of the S&P 500 index over
the 30 days, and is calculated using real-time prices of options on the
S&P 500 index (see Appendix C). Furthermore, is considered to be a
leading indicator of investor sentiment and market volatility.

In this review, we give an overview and examine the current state
of the art in the use of AI and machine learning for predicting real-
ized volatility and implied volatility indices. To this end, we conduct
searches in four major scientific literature databases and report on the
result. We provide a brief summary of each study, highlighting what
methods were used and what results were achieved. Generally, we find
promising results for the efficacy of AI and machine learning in volatil-
ity forecasting, particularly through the use of hybrid and ensemble
methods. To shed light on the general trends within the literature,
we present descriptive statistics on the different facets inherent to the
2

forecasting literature. We find that the US equity market comprises the
largest area of study, and that the use of exogenous data often provides
performance improvements, particularly over longer forecasting hori-
zons. Furthermore, we find that memory-based neural networks like
LSTM, random forest and boosting methods constitutes the majority
of applied AI methods. Additionally, we present the different sampling
frequencies and forecasting horizons, and find that intradaily and daily
sampling frequencies are most widely used. Furthermore, we discuss
important findings in light of our research questions, in addition to key
challenges and opportunities for further research within the area.

We find that, going forward, the use of XAI and implied volatility
forecasting proves an interesting direction for further research, as well
as combination of the promising performing models and Bayesian
approaches to quantify the uncertainty introduced by models to explain
trustworthiness of the predictions. To the best of our knowledge, this
is the first systematic review tackling the application of artificial intel-
ligence and machine learning in volatility forecasting, where implied
volatility and realized volatility are used as proxies.

The remainder of this paper is organized as follows. Section 2
provides a detailed description of our methodology. Section 3 de-
scribes typical empirical characteristics of the existing literature; such
as markets, data and models investigated. Section 4 presents our most
important findings and Section 5 concludes.

2. Methodology

The scope of this literature review is to summarize the existing
research and methods concerning prediction of volatility using machine
learning or artificial intelligence. Importantly, we also identify gaps in
this research in order to advise areas for further research. We follow a
systematic methodology, as literature reviews which are not thorough
and transparent are of little scientific value (Kitchenham, 2004).

More specifically, the research questions focus on whether (i) the
machine learning models are benchmarked on a fair basis with state-of-
the-art econometric models, (ii) what the motivation for prediction of
volatility is, (iii) which markets are studied, and (iv) whether volatility
is forecastable with AI and machine learning. In relation to the last
research question we investigate with particular scrutiny empirical
evidence in favor of machine learning models relative to alternative
approaches. As machine learning models tend to be less parsimonious
than traditional econometric models, this brings up challenges regard-
ing explainability of the models. Consequently, we provide an overview
of the use of Explainable AI (XAI) in the volatility forecasting literature.

In order to make comprehensive and unbiased searches in literature
databases, we identify keywords and search terms through the planning
process of the systematic review which are based on titles, abstracts,
and keywords from the studied material together with external and
internal domain knowledge. The initial focus are studies which use any
kind of implied volatility index as a proxy for volatility in forecasting
or prediction. However, we find it appropriate to include studies using
realized volatility as a proxy as well. This is because they both, unlike
conditional volatility estimated by squared returns in the traditional
GARCH-models, have no model-based relationships between the days.
With indices like the VIX being directly observed, the realized volatility
estimate of the latent volatility can be considered close to observable.
Thus, these proxies can in theory be modeled using the same kind
of modeling techniques. Additionally, there is limited amount of re-
search conducted using implied volatility indices, such as the VIX, as a
volatility proxy.

Based on these findings, through an iterative process which is con-
sistent with guidelines from Kitchenham (2004), the search queries fea-
tured in Table 1 are constructed according to the required syntax of the
databases to have as close meaning as possible. These search queries are
combinations of keywords and subject terms to both broaden and focus
our search according to the above-mentioned criteria. However, they

are a compromise, as a purely focused search would result in missing
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Table 1
The initial database searches. The queries are intended to be identical but are modified to be compatible with the databases syntaxes.

Database Search query

Web of Science ((Realized volatility OR Implied volatility OR Volatility index) AND (Forecast OR Predict OR Forecasting OR Prediction) AND (AI
OR Artificial intelligence OR Machine learning)) (Title)(Abstract)(Keywords)

Scopus TITLE-ABS-KEY ((‘‘Realized volatility’’ OR ‘‘Implied volatility’’ OR ‘‘Volatility index’’) AND (‘‘Forecast’’ OR ‘‘Predict’’ OR
‘‘Forecasting’’ OR ‘‘Prediction’’) AND (‘‘AI’’ OR ‘‘Artificial intelligence’’ OR ‘‘Machine learning’’))

Science Direct Title, abstract, keywords: ((Realized volatility OR Implied volatility OR Volatility index) AND (Forecast OR Predict OR Forecasting
OR Prediction) AND (AI OR Artificial intelligence OR Machine learning))

ProQuest SUMMARY, IF, TITLE (((Realized volatility OR Implied volatility OR Volatility index) AND (Forecast OR Predict OR Forecasting OR
Prediction) AND (AI OR Artificial Intelligence OR Machine learning)))
Fig. 1. The number of results from each database after initial search and screening.
out on some potentially relevant literature. Consequently, the search re-
sults are manually screened. The selected databases are Web Of Science,
Scopus, Science Direct and ProQuest, which are among the largest and
more commonly used for such database-driven searches. By conducting
searches through multiple multi-publisher databases most publications
from publisher-specific sources will also be included (Hiebl, 2021).

The first screening on the initial search results in the databases
is done based on the information provided in the search summary of
the databases with the following criteria: realized volatility or implied
volatility must be included in either title or abstract. Secondly, the title
or abstract must mention machine learning or artificial intelligence. Hy-
brid econometric models which include machine learning or artificial
intelligence are accepted. The reason why traditional GARCH-models
are not included is because they either implicitly or explicitly rely
on squared returns as a volatility proxy for a model-based forecasting
of conditional volatility between the days. Another important reason
is that extensive research and reviews already exist within that area.
Finally, prediction or forecasting must be a part of the paper’s objective
and be pointed out in the title or abstract. The initial combined search
result consisted of 384 papers, not accounted for duplicates. As shown
in Fig. 1, the number of papers decreased to 165.

Bibliometric files from all the databases are downloaded and stored
in comprehensive Pandas DataFrames in a Jupyter Notebook. Due to
different structures in the bibliometric files from the different sources,
custom mappings are created to merge the files into a single data frame,
with identical column names. This makes it possible to eliminate dupli-
cates in the present sample. The sample is further decreased through a
second screening where we investigate whether the papers meet the
criteria that the objective of the paper is to predict volatility, where
3

the volatility proxy is either realized volatility, or implied volatility
indices. Additionally, the model used for the prediction must either be
a machine learning model or a hybrid model. We also discuss included
and excluded deviations through a second review. After removing
duplicates, as shown in Fig. 2, the sample consists of 93 papers, and
54 after the last criterion based exclusions.

We gather quantitative metrics related to paper- and journal met-
rics, namely, Scopus citation score, Scimago journal rankings, Web
of Science (Clarivate) journal impact factor and rankings, and total
citations. Solely relying on such metrics can lead to favoring generalist
journals instead of specialist journals and were therefore used with
carefulness as exclusion criteria, see Hoepner and Unerman (2012). To
ensure that such specialist journals were not excluded solely on the
above metrics, we also considered a set of expert suggestions within the
field financial forecasting. When papers have an origin from more than
one of the selected database sources, the highest total citation number
is chosen.

We also exclude unfinished works, unpublished papers, as well as
conference papers from our sample. Hiebl (2021) presents different
opinions whether such gray literature should be included or not in the
systematic sample, but we chose to value peer-reviewed papers, and
choose to only include those. Additionally, only work written in the
English language was included.

The final sample consists originally of 28 papers, adjusted to 32 after
inclusion of additional highly relevant papers which met the above
mentioned requirements. These are discovered through snowball sam-
pling while doing a comprehensive reading of all the papers following
a predefined reading template and research questions.
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Fig. 2. Results after screening for whether the objective of the paper is to predict realized of implied volatility.
Fig. 3. Distribution of included papers across academic journals.
3. Existing literature — data and empirical design

This sections summarizes descriptive dimensions of the existing
literature. More specifically, we categorize the literature by academic
publishing channel, markets and data investigated — including sam-
pling frequency, models and model evaluation criteria.

Journals
The sample originates from 21 different journals, and the com-

position is portrayed in Fig. 3. Expert Systems With Applications is
the biggest contributor, aligning with the previous findings of Bustos
and Pomares-Quimbaya (2020) and Henrique et al. (2019). Eight of
the journals cover finance and finance-related matters, while four is
primarily dedicated to research associated with computer science. PLOS
One is a general journal covering findings within a wide array of fields
and disciplines, leaving nine journals more specialized towards a spe-
cific area. These cover energy and environmental aspects, forecasting,
general economics and operational research.

Scientific Productivity
There has been a rising prevalence of AI and machine learning in

financial time series forecasting. In related reviews, see e.g. Kumbure
et al. (2022) and Bustos and Pomares-Quimbaya (2020), the amount
of papers applying different ML and AI methods increases drastically
over the latter part of the previous decade. We find a similar trend
in our sample, where Fig. 4 showcases the increasing popularity of AI
methods for volatility estimation. The rapid surge of papers originating
from 2021 and 2022 is of particular interest. This trend might indicate
an increasing interest in the combination of AI and volatility estimation
4

methods, perhaps in part due to the turbulent state of financial markets
during the early parts of the 2020s.

Markets
The associated market of each target variable can be identified

based on the underlying asset class: commodities, equities, or curren-
cies. Then, a further split into the individual asset can be performed.
This grouping is displayed in Fig. 5. Some studies used a selection
of stocks from one stock exchange or index, and these are put into
the ‘‘Stock’’ category. Note that some studies involves several target
variables, causing an inflated count for some markets. However, none
of the studies used assets across the initial market segmentation. As
such, the overall grouping of the papers remains informative. The
regional breakdown of each asset is displayed in Fig. 6. 19 of the
studies dealt with equity market, where American stocks or indices
comprised the biggest market. Some composite indices in this category
consists of assets outside of the US, but for simplicity they will be
classified based on the index’ country of origin. Eight studies used
commodities, six of which were oil. These were primarily based on
WTI indices, but Tissaoui et al. (2022) focused their study on the OVX.
As these are all based on American assets, they were placed into the
American market. The remaining commodity-based studies used gold as
the underlying asset for their volatility forecasting. Finally, five studies
utilized currencies, where three handled Bitcoin and two used currency
exchange rates. Due to the international nature of currency exchange
rates and cryptocurrencies, these are not assigned a nationality.

From the above analysis, it is apparent that a majority of the studies
in our sample were based on American oil and equity markets. The
high volume of activity and market capitalization in these markets
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Fig. 4. The annual scientific productivity in the included sample.
Fig. 5. The underlying target assets divided into market and asset type.
can make them more attractive for closer investigation, and they can
be used as proxies for the global market. However, there are some
benefits to approaching more localized markets, especially if measured
against the larger indices. It might aid in discovering local differences,
in turn allowing for a deeper understanding of the drivers of volatility.
Additionally, some localized assets might exhibit different behavior
compared to the larger counterparts, as shown by Chen and Hu (2022).
The CSI 300 index portrayed more extreme statistical values than
the S&P 500, allowing the authors to both compare the assets and
the performance of each model in different environments. This can
be utilized to assess the generality of the model, and how it copes
with processes exhibiting different characteristics than the mainstream
assets.

Data
Several of the studied papers utilized external data. Many of the

authors specifically investigate effects of certain variables on fore-
casting performance. Others incorporated additional data to aid their
given model. In total, 22 of the papers included some exogenous data
in their set of predictors. This consisted of macroeconomic, finan-
cial, technical and uncertainty-related variables, specified in Table 3.
The former category expresses information about the general eco-
nomical environment through variables like inflation, credit spreads
5

and industrial production growth. Financial variables represent details
about the financial market, e.g. Fama–French factors, and firm-specific
facts where applicable. The technical indicators recounts characteris-
tics about a given financial time series, e.g., through momentum and
moving average. Uncertainty-related data accounts for variables related
to measurements of general uncertainty. This includes both political
and news-based risk indices, in addition to quantification of publicly
perceived risk through sentiment surveys, Google search trends and
microblogging data.

The inclusions of exogenous data were mostly motivated by earlier
works and recommendations, were there appeared to be wide sup-
port within the literature for including extra data. Several studies,
see e.g. Bucci (2020), have found strong links between volatility and
macroeconomic foundations, particularly for longer forecasting hori-
zons, motivating the inclusion of this data for prediction purposes.
Further, building on the approach of Zhang, He et al. (2022), using
high-frequent sentiment data regressed at the residuals of an AR model
might prove a promising avenue for including new data.

Of the remaining ten papers, two applied technical indicators based
on their respective asset of choice: Petrozziello et al. (2022) provided
their LSTM with open-close returns in addition to the realized volatil-
ity estimate, and Luong and Dokuchaev (2018) converted volatility
into five technical indicators. Additionally, Vidal and Kristjanpoller
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Fig. 6. The number of target assets by region. The region is determined by the source of the asset, or the location of its corresponding trading exchange.
Fig. 7. The number of papers using each ML and AI model. The topmost figure details the usage of the overarching family of models, and the lower figure breaks down each
group into its respective model frequency.
(2020) generated images based on returns as input to a CNN-LSTM
hybrid network. The remaining seven papers used no extra data besides
autoregressive components.

Models
As specified in Section 4.2, the motivations behind choice of models

varied between papers. Some merely wanted to study the effect exoge-
nous data had on predictive performance, thereby focusing on applying
machine learning techniques for estimation purposes, while others were
more concerned with using AI and ML models for the entire forecasting
pipeline. This spurred the use of many different models in our sample,
both econometric and ML and AI model. For simplicity’s’ sake, we have
6

included AR and its family of models under the econometric umbrella
of models.

In Fig. 7, the number of AI and ML models used in the sample are
showcased. The topmost figure displays the general group of models,
and gives a clear view of the most popular categories; neural networks
and tree-based models constituted about 75% of these models. Moving
to the lower section of the figure, a breakdown of each category is
provided. Amongst the tree-based models, RF were the most widely
used. This was partly caused by its favored use as a hybrid model in
tandem with HAR and AR models, where these comprised six of its thir-
teen implementations. Generally, its ability to handle multicollinearity
and nonlinearity in a data-driven way makes it an attractive option for
including exogenous data. This was demonstrated by Christensen et al.
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Fig. 8. The number of papers using each given econometric model. Except for the GARCH models, these counts includes extensions of the baseline model, e.g., HAR-RV accounting
for jumps and leverage effects.
(2022), where increasing the forecasting horizon severely improved the
performance of RF over econometric models when including external
data. The other popular models in this category were mainly boosting
methods. One advantage of this family of models comes with their
variable importance feature; by inspecting splits made within the trees,
it is possible to assess how much the model weighs different predictors.

The most popular category of models were neural networks. This
includes simple feed-forward-networks, autoregressive networks and
the recurrent network family of models. ANNs – both singular and
multilayered perceptrons – and LSTMs were the most used models
within this category. In particular, LSTM consistently ranked among
the top performers when included, likely due to its ability to handle
the inherent memory found within volatility time series. Additionally,
it saw some use as the AI component of a hybrid model, especially when
combined with GARCH models. The remaining NN models included
some newer innovations, e.g. the reservoir and GRU, which tended to
deliver good results.

Linear models and ‘‘other’’ makes up the final two categories. The
former is composed of logistic regression – used for the directional
classification problems – and penalized regression models: Ridge re-
gression, LASSO and Elastic net. These three were used in different
ways; either as independent models, as in Christensen et al. (2022), or
to apply feature selection. In the latter case, LASSO or the likes were
applied beforehand to select a subset of features, thereby reducing the
model complexity, as shown in Zhang, Wahab et al. (2022), where the
models applying feature selection greatly improved its performance.
The ‘‘other’’ category consisted of models not fitting into a clear family
of models, where SVR where the most used model (see Fig. 8).

For the econometric models, displayed in Fig. 8, HAR-RV remained
the most popular choice, likely due to its role as one of the prevailing
models within realized volatility forecasting. Additionally, its role as an
AR-like model makes it suitable for applying several extensions, be it
technical components – e.g., leverage effect and jump components – or
exogenous data. In addition to the AR models, they were particularly fa-
vored as the baseline model for testing the effects of external variables;
the family of papers investigating effect of EPU-like predictors mainly
used AR or HAR-RV as their baseline, as mentioned in Section 4.2.
After HAR-RV, the GARCH family of models composed a majority of the
econometric models. These were either implemented as benchmarking
models, as in the case of Petrozziello et al. (2022) with GJR-MEM and
R-GARCH, or as inputs to hybrid AI models.
7

Sampling Frequency
The sampling frequency of the target asset is shown in Fig. 9.

Three main groupings can be identified: monthly, daily and intradaily.
Generally, the choice of sampling frequency can be attributed to the
use of external data; it is often not available below a monthly level,
particularly for macroeconomic and uncertainty variables. Thus, with
some exceptions, intradaily frequencies were mainly used in studies
only using endogenous data. Persio et al. (2021) – using only internal
data – motivated their use of monthly realized volatility based on
reducing day-to-day price fluctuations. Further, out of the 21 papers us-
ing exogenous data, two employed intradaily frequencies. Christensen
et al. (2022) used five macroeconomic indicators available at a daily
level, allowing them to utilize intradaily frequencies when estimating
daily realized volatility. Similarly, Higashide et al. (2021) based their
research on high frequent financial and technical data – such as trading
volume and bid–ask spreads – accessible at an intradaily frequency.
Some authors also applied two different sampling schemes. Prasad et al.
(2022) used both daily and weekly macroeconomic variables to forecast
the corresponding direction of the VIX, where the weekly data was
included due to reporting delays for daily data.

Another aspect of the forecasting procedure of the papers regards
the forecasting horizon. Table 2 shows the baseline volatility frequency
and the forecasting horizon used by each paper. Contrary to the studies
using implied volatility, all papers dealing with realized variance had to
estimate their volatility proxy. Thus, the sampling frequency is usually
higher than the corresponding volatility estimate. However, while the
majority of studies computed realized volatility by summing square
returns, Chen and Hu (2022), Kristjanpoller and Minutolo (2015) and
Kim and Won (2018) used forward-looking approaches. Here, volatility
was estimated by adding over terms consisting of the return at time
i subtracted by the average return over the given period. Thus, they
did not use intradaily data to estimate daily realized volatility, instead
opting to base volatility on future values.

The forecasting horizons used varied greatly, from simple 1-step
ahead up to several hundred steps. Ten studies reported only using 1-
step ahead forecasts, while those exploiting several forecasting horizons
differed in the used number of steps ahead. Yao et al. (2017) employed
the longest horizon of 500 steps ahead for both hourly and daily fore-
casts. As for the number of different forecasting horizons, an average of
3.4 different horizons were investigated per study. Notably, Grigoryeva
et al. (2014) tested 20 different forecasting horizons; from 1 up to 20
days ahead.
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Fig. 9. The sampling frequency of the target asset. The leftmost figure displays the general sampling frequency, while intradaily frequencies are expanded upon in the right figure.
One study used both daily and weekly frequencies, thereby giving a higher total count than the actual sample size.
Table 2
The table displays the sampling frequency of the target asset, the frequency of the volatility proxy and the different forecasting horizons utilized in each paper.

Reference Sampling frequency Proxy frequency Forecasting horizon

Vrontos et al. (2021) Monthly Monthly 1-month-ahead
Petrozziello et al. (2022) Intradaily (unspecified) Daily 1-day-ahead
Luong and Dokuchaev (2018) 15 s interval Daily 1-, 5- and 22-day-ahead
Tissaoui et al. (2022) Daily Daily 1-day- and week-ahead
Song et al. (2022) Intradaily 5-min Daily 1-and 5-day-ahead
Christensen et al. (2022) Intradaily 5-min Daily 1-day, 1-week, 1-month-ahead
Liu et al. (2018) Intradaily 5-min Daily 1-, 2-, 5-day-ahead
Çepni et al. (2022) Daily Monthly 1-, 3-, 6-, 12-, 18-, 24-, 32-, 48-month-ahead
Gkillas et al. (2021) Hourly Daily 1-day, 1-week, 1-month-ahead
Yao et al. (2017) Intradaily 10 ms Hourly and daily 5-, 20-, 100-, 200-, 360-, 500-h/days-ahead
Bouri et al. (2020) Hourly Daily 1-, 5-, 22-days-ahead
Gupta and Pierdzioch (2022) Daily Monthly 1-, 3-, 6-, 12-, 24-months-ahead
Plakandaras et al. (2017) Monthly Daily 1-month-ahead
Higashide et al. (2021) Intradaily 5-min Daily 1-day-ahead
Oliveira et al. (2017) Intradaily (unspecified) Annualized daily 1-day-ahead
Gupta et al. (2021) Daily Monthly 1-, 3-, 6-, 12-months-ahead
Grigoryeva et al. (2014) Intradaily 6-min Daily 1-up to 20-days-ahead
Prasad et al. (2022) Daily and weekly Daily and weekly 1-day- and 1-week -ahead
Persio et al. (2021) Daily Monthly 1-day-ahead
Lu et al. (2022) Daily Monthly 1-, 3-, 6-, 9-, 12-months-ahead
Qiu (2021) Intradaily 5-min Daily 1-, 7-, 14- and 30-days-ahead
Bucci (2020) Daily Monthly 1- and 5-months-ahead
Chen and Hu (2022) Daily Daily 5- and 10-days-ahead
Zhang, He et al. (2022) Daily Monthly 1-, 3-, 6-, 12-months-ahead
Zhang, Wahab et al. (2022) Daily Monthly 1-, 3-, 6-, 12-months-ahead
Ghosh and Sanyal (2021) Daily Daily 1-day-ahead
Osterrieder et al. (2020) Intradaily 1-min Seconds 1 min-ahead
Kristjanpoller and Minutolo (2015) Daily Daily 14-, 21-, 28-days-ahead
Ribeiro et al. (2021) Intradaily 5-min Daily 1-, 5- and 21- days-ahead
Vidal and Kristjanpoller (2020) Daily 14-day 14-days-ahead
Kim and Won (2018) Daily Daily 1-, 14- and 21- days-ahead
Zolfaghari and Gholami (2021) Intradaily (unspecified) Daily 1-, 10-, 15-, 20-, 30-, 60-days-ahead
Model Evaluation
Several different techniques were used for testing and evaluation.

First, a model should be tested with an out-of-sample forecast if its
predictive performance is to be assessed. This can be achieved through
different means, where the most popular methods were fixed, rolling
and recursive window regressions. 17 of the studies used a rolling
window evaluation scheme, eight applied a recursive window and
eleven employed fixed size windows. Some used multiple methods for
testing their model performance, allowing them to test the robustness
of their results across different evaluation and estimation methods.
Additionally, several studies used different window sizes when using
recursive and rolling windows. In particular, Gupta et al. (2021) used
five window sizes in increments of 20 between 60 and 140 daily
observations.
8

Another facet of the evaluation procedure involves the choice of
error statistics. The potential use of statistical tests comprises an ad-
ditional factor in evaluation methods, where they can be used to
assess the relative statistical significance of different forecasts and
models, as well as the significance of the forecast compared with the
target. In total, 37 different error metrics were found in the papers.
The breakdown of the different metrics can be found in Fig. 10. For
regression problems, the most prevalent metrics were MSE and MAE.
However, some of the metrics include only minor differences, e.g., MSE
and MSFE; the former is regular mean squared error, while the latter
is mean squared forecasting error. The classification problems – those
forecasting the direction of the target – were relatively few in numbers
compared to the regression problems, but relied mainly on accuracy
and F1 score for model evaluation. For the testing measures used,
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ten papers did not use any tests in their study. The remaining 22
papers used a total of eleven different tests, showcased in Fig. 11. The
Diebold–Mariano, Clark–West and Model Confidence Set constituted
the majority of applied tests by a large margin.

As evident from Figs. 10 and 11 there is variation as to how
model performance is assessed. A plausible explanation could be the
fact that there is currently no generally accepted standard for fore-
cast evaluation in every possible scenario, as thoroughly discussed
in Hewamalage et al. (2023). We note that MSE, and variations thereof,
are frequently applied. This is reasonable, as parameters of machine
learning algorithms typically are tuned using MSE in training and
validation datasets. For volatility models trained on L1 loss, MAE might
be more appropriate. As for statistical tests of forecasting accuracy,
the Diebold and Mariano (1995) and Clark and West (2007) are the
most often used. Both are pairwise tests of predictive accuracy; the DM
test evaluates two competing forecasts, whereas CM specifically tests
for equal predictability of nested models. The Model Confidence Set
of Hansen, Lunde et al. (2011) serves a slightly different purpose, as it
from a set of models selects a subset of best performing models whose
statistical predictability cannot be distinguished from each other.

Alternative model evaluation schemes
To assess model robustness, it can be useful to inspect its perfor-

mance under different specifications and conditions. Separating be-
tween ‘‘good’’ and ‘‘bad’’ volatility – volatility driven by positive and
negative returns, respectively – can provide valuable information about
the model’s practical implications, as well as its ability to handle
the oft present leverage effect in volatility series. Furthermore, the
model’s performance during different levels of financial stress might be
particularly intriguing. A model that performs well during relatively
calm periods, but fails to produce adequate results during turbulent
times can be less appealing to practitioners than one better with better
performance in the more volatile regimes. These considerations are
not limited to periods defined by their volatility levels; they can also
be applied to different business cycles. To summarize, including alter-
nate forecasting evaluations and period specifications can help inform
researchers about the robustness of their results.

In total, ten of the papers included some kind of alternative evalu-
ation scheme in their methods. Bouri et al. (2020), Çepni et al. (2022)
and Gupta et al. (2021) tested their selection of models’ performance
on good and bad volatility, and generally found results corroborating
their main findings. Çepni et al. (2022) also joined (Christensen et al.,
2022; Lu et al., 2022; Petrozziello et al., 2022) in applying different
volatility regimes in their testing, e.g., low and high regimes. A general
trend among those comparing AI and ML with econometric models
were the tendency of the latter to struggle more with high-volatility
regimes, especially when compared against the NN family of methods
and ensemble methods. Along a similar vein, Petrozziello et al. (2022)
and Lu et al. (2022) also compared model performance during pre-
and in-crisis periods, e.g., before and during Covid-19 or the financial
crisis of 2008. The results did not differ dramatically compared to
their general tests. Tissaoui et al. (2022) compared model performance
and variable importance before and during Covid-19 to assess different
drivers of volatility, and found that different XGB performed better
during the more turbulent period while SVM fared better for the more
tranquil decade leading up til 2020. Bucci (2020) used a subsample of
his data to assess the robustness of the overall results, finding generally
equivalent results. Next, Chen and Hu (2022) looked at how models
fared in different markets, testing them on both the CSI 300 and the
S&P 500. Along with Zhang, He et al. (2022) and Lu et al. (2022) used
an additional alternate evaluation scheme in the shape of business cy-
cles. Lu et al. (2022) achieved good results with ensemble methods and
NNs for both specifications, while the econometric models performed
well in recessions. Zhang, He et al. (2022) tested their aligned GEPU
model, and found that it performed better during expansions, while the
9

more general AR models were better suited for the recessions.
4. Discussion of important findings

This section contains our most important findings. Section 4.1
presents typical sources of motivation in the current literature. Sec-
tion 4.2 discusses the main research questions addressed, which we
broadly group into (i) examining the effect of exogenous variables, (ii)
comparing hybrid ML models to econometric models, and (iii) general
model assessment. Section 4.3 discusses comparisons of machine learn-
ing and econometric models in further detail. Section 4.4 elaborates on
the use of XAI to enhance explainability of volatility forecasts. Tables 3
and 4 contain an overview of the papers constituting or sample.

4.1. Overall motivation

Volatility prediction is of great interest due to its many implications
on financial activities. These activities are the source of motivations for
many of the researchers in the selected sample to research this area.
Some of the most common ones are risk and portfolio management,
derivatives pricing (Chen & Hu, 2022; Christensen et al., 2022; Luong
& Dokuchaev, 2018; Yao et al., 2017), and more specifically various
active portfolio immunization strategies (Vrontos et al., 2021). Some
find volatility prediction a interesting and challenging task for newly
introduced statistical and computational frameworks such as reservoir
computing (Grigoryeva et al., 2014).

Oil is the most actively traded commodity in the world, conse-
quently, many of these papers have their scope on that asset. Tissaoui
et al. (2022) address the issues regarding this very volatile commodity
because of the high risk it involves when small changes in the crude oil
prices can damage national economies. Some of the more recent crisis
such as Covid-19 have also sparked an interest in alternative underlying
assets for diversification, where the impact of economic policy in the
US, as an important player in the international market, on the US
oil-price returns volatility is of interest (Çepni et al., 2022).

Another such alternative asset is Bitcoin, which has also motivated
the need for better forecasting methods of volatility for managing
Bitcoin positions, as well as investigate drivers of Bitcoin Gkillas et al.
(2021). Lastly, Bouri et al. (2020) points out anecdotal evidence of
Bitcoin acting as a flight to safety, or an asset independent of market
risk. They are further motivated to investigate this phenomenon while
considering the effect of US–China trade war and Bitcoin volatility.

4.2. Main research questions

To provide an outline of the sample and its characteristics, Table 3
presents a summarized view along the portrayed dimensions. As can
be inferred from the table, the final sample includes a plethora of
different models, underlying assets and forecasting targets. Hence, this
section will provide a short overview over each paper by grouping them
based on their main goal: examining effect of an exogenous variable,
using a hybrid ML and econometric model, or more generally, assessing
the forecasting performance of different models. Albeit several of the
papers can fall into multiple of these categories, we have made this
distinction based on how they relate to the two first criteria. Hence,
those with a main approach not fitting either of those are put into the
overall comparison category.

Examining Effect of Exogenous Variables
Several papers examine the overall effect from certain predictors

on overall volatility forecasting. Generally, several model modifications
are performed, wherein the data of interest is excluded in some and
included in others. Thus, the authors can examine the impact the
inclusion of the given data has on modeling performance. Çepni et al.
(2022) investigated the effect of using uncertainty-related data on
different levels of granularity for forecasting the realized variance of
WTI oil price returns. They chose to use the US as a proxy for the global

market, and constructed both nationwide and disaggregated state-level
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Fig. 10. The different error metrics used in the sample, grouped by the type of forecasting problem. See Appendix D for abbreviations.
Fig. 11. The different testing measures utilized in the sample. Their major area of use was to compare models and forecasting results.
US uncertainty indices to test their impact on forecasting performance.
As the uncertainty data was monthly, and the realized variance was
based on daily log returns, they aggregated the daily data into monthly
realized variance. A simple AR model estimated using OLS was used
as the baseline, and predictors were sequentially added to assess the
effect of including more information. To tackle the resulting increased
model complexity, they resolved to use RF and LASSO in estimating the
realized variance. Using the 𝑅2 out-of-sample statistic for comparing
models, they found that including uncertainty-related measures tended
to increase the performance for longer forecasting horizons.

Gupta and Pierdzioch (2022) followed the approach of Çepni et al.
(2022) to investigate the role of uncertainty and geopolitical risk in
the realized volatility of oil price returns. Using the same methods
as Çepni et al. (2022), they included the addition of a geopolitical
10
risk index and an equity-market volatility tracker, both in an aggre-
gated and disaggregated version. Similarly to Çepni et al. (2022), they
found that the disaggregated metrics improves forecasting performance
for longer horizons, particularly when using random forest as the
estimation technique. These results might indicate that disaggregated
uncertainty-related indices are useful for predicting long-run volatility.

The effect of an aligned global economic policy uncertainty (GEPU)
index on forecasting monthly realized variances of WTI oil price returns
are investigated by Zhang, He et al. (2022). They used a modified
PLS (Partial Least Squares) approach to construct an aligned GEPU
index targeted on the residuals of a simple AR model. Next, they com-
pared the model with the benchmark AR model without uncertainty
data. Additionally, they included other variants of the GEPU model to
compare different approaches, and perform an in-sample comparison
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between exogenous economic variables and the GEPU term. They found
that, for the in-sample results, the GEPU term provided complemen-
tary information not covered by existing GEPU and macroeconomical
data. Further, the out-of-sample 𝑅2 statistic of their resulting models
hows that the GEPU-PLS model significantly increase the forecasting
erformance in both shorter and longer forecasting horizons. Finally,
hey implemented robustness checks and different trading strategies to
ssess the robustness and economic significance of their findings, and
oncluded that the GEPU-PLS model can provide substantial benefits
or forecasting realized variance of oil prices.

Impact of uncertainty related to the US–China trade war in rela-
ion to Bitcoin volatility is of interest in the study from Bouri et al.
2020), where they used hourly log-returns to derive the daily realized
olatility, and extract Google search volume intensity associated with
he US–China trade war to capture the uncertainty aspect. As a baseline,
hey used the HAR-RV model, but included additional variables to
ccount for different aspects related to jumps, leverage effects, as well
s realized skewness and realized kurtosis. The model was estimated
sing random forest, and by comparing models with and without the
ncertainty metrics they checked whether it improved the forecasting
erformance of a given model. Through a Diebold–Mariano test, re-
ults showed that the inclusion of trade uncertainty improved overall
orecasting performance, especially for longer forecasting horizons.

With a special emphasis on determining whether the number of
ransactions can be of significance in forecasting, Gkillas et al. (2021)
ttempted to forecast daily Bitcoin realized volatility. Daily realized
olatility was estimated using hourly returns, and total number of
itcoin transactions were used as a proxy for transaction activity. To
odel the volatility, they utilized a random forest and HAR-RV-Jump
ybrid to assess each model’s performance. Through a DM-test and CW-
est, they found that accounting for number of transactions improved
he out-of-sample forecasting accuracy, especially when increasing the
orizon of the forecast. The same results applied to the hybrid model
gainst a regular HAR-RV model.

Plakandaras et al. (2017) used SVR variants to determine if EPU
elated to Brexit has an effect on forecasting the USD/GBP exchange
ate realized volatility. They used both daily and monthly observations
o derive realized volatility, and combined this with the logarithmic
ifference of the US and Brexit EPU indices. Starting with an AR model,
hey included different variations of the EPU data as extensions to the
odel, and compared OLS with four different SVR kernels to estimate

he realized volatility. They observed that the models using the Brexit
PU estimated with SVR tended to produce the lowest RMSE on both a
aily and monthly frequency. Additionally, they used a Quandt-test to
rove that Brexit was a structural break, and demonstrated that a post-
rexit AR model estimated using OLS performs better than an otherwise
quivalent model spanning the entire period.

Twitter data with sentiment values to deduce whether they have an
ffect on forecasting VIX and the annualized RV on the S&P 500, RSL,
JIA and NDQ was proposed by Oliveira et al. (2017). Furthermore,

hey compared several ML models against each other and an AR(5)
enchmark model, and with a DM-test for comparing forecasting re-
ults, found that the usage of sentiment and attention indicators did not
mprove the forecasting performance on a statistical significant level.

In an attempt to forecast realized volatility of DIJA on a monthly
asis, Gupta et al. (2021) suggested a random forest model as well
s a HAR-hybrid model. They wanted to investigate the impact on
orecasting accuracy when including investor sentiment indices and
urveys. Using an out-of-sample 𝑅2-statistic in tandem with a CW-test,
hey found that combining investor sentiment related data in addi-
ion to macroeconomical and financial data improved the forecasting
erformance of their model for shorter and intermediate forecasting
orizons.

Prasad et al. (2022) examined the impact of including macroe-
11

onomical variables when predicting the direction of the VIX. Using G
logistic regression, LGBM and XGB, they found that the two latter mod-
els with the exogenous data exhibited statistically significant results
through a t -test on the MCC, in both a weekly and daily forecasting
horizon.

In a similar directional approach, Higashide et al. (2021) forecasted
the aggregated Nikkei realized volatility direction using a random
forest and HAR hybrid model. Their main focus was the inclusion of
the TSE Co-location dataset in improving volatility forecasting. They
compare both a HAR using a logistic function and their hybrid model,
and find that including the data improves the F-measure the most for
the hybrid variant. Additionally, the data appears to be more important
when forecasting over a longer horizon.

Hybrid ML and Econometric Models
In recent years, there has been an increase in the number of pa-

pers combining ML and econometric approaches to forecast volatility.
By combining the two approaches, one might be able to exploit the
strengths of both to achieve a better forecasting performance. Yao et al.
(2017) used a two-component short-term/long-term volatility approach
to forecast the exchange rate realized volatility of different currencies
through a hybrid ANN-AR model. They extracted the short- and long-
term volatility using a Hodrick–Prescott filter, and used the latter as
additional input to the autoregressive neural network. Then, the short-
term volatility was estimated using an AR model. When comparing
the performance of this model against an EGARCH and two-component
GARCH, their proposed approach outperformed the traditional models
on both an hourly and daily-based horizon for almost all scenarios.

Liu et al. (2018) used RNNs and combined them with a HAR-RV-
Jump model to forecast the S&P 500, and compared the results of
all models using a set of error measures. They found that the RNN
appeared to produce better results than HAR with a smaller amount
of data. When they increased the size of the training sample, their per-
formance equalized. However, the hybrid model performed worse than
the non-hybrid version for regular forecasting, hence, they conclude
that there is no need for a hybrid model. Overall, they infer that RNN
seems preferable when there is less available data.

In an attempt to capture both linear and nonlinear data generation
processes (Qiu, 2021) proposed a method for combining forecasts based
on complete subset least squares vector regressions (LSSVR𝐶𝑆 ) as an
stimator for the HAR-RV model. In a Monte Carlo simulation exper-
ment, his LSSVR𝐶𝑆 outperforms many other competing estimators,
hile in an empirical forecasting exercise of Bitcoin realized volatility,

he LSSVR𝐶𝑆 consistently achieved the best 1-, 7-, 14-, and 30-days
ut-of-sample forecasting performance.

A hybrid LSTM-GARCH(1,1) model is presented by Persio et al.
2021) to forecast the monthly S&P realized volatility. Their main task
evolves around using the VolTarget strategy to assess its performance
hen compared to using regular historical volatility. Using their hybrid
pproach, they find that it results in a higher average return compared
o the standard VolTarget strategy. Similarly, Kim and Won (2018)
ombined multiple GARCH-models with an LSTM. Specifically, they
ried to combine LSTM and a deep feed-forward neural network with
GARCH, EGARCH and EWMA model while forecasting the realized

olatility of the KOSPI 200 index. They concluded that combining
wo or more GARCH-models with an LSTM provided the best results,
nd through a DM- and WS-test proved their results to be statistically
ignificant.

Ribeiro et al. (2021) used a combined HAR-PSO-ESN hybrid in order
o forecast daily realized volatility of three Nasdaq stocks. They com-
ared their model against multiple machine learning and econometric
odels, and found that the HAR-PSO-EN gave statistically significant

etter results for three different horizons. Furthermore, Zolfaghari and
holami (2021) compared an AWT-LSTM and HAR-RV hybrid against
n ANN and HAR-RV hybrid. They found that the AWT-LSTM-HAR
ybrid gave better results with regards to their evaluation metrics.

Different machine learning models compared with HAR-RV and
ARCH in predicting the SSE Composite Index realized volatility are
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studied by Song et al. (2022), where they further tested the effective-
ness of including the short-term volatility found by a GARCH-MIDAS
model. They found that LSTM, GRU and XGB produced the lowest
errors according to their measures, and both deep learning methods
benefited from including the GARCH-MIDAS volatility. Results from a
DM-test revealed that GRU had the overall best forecasting performance
among the models.

Kristjanpoller and Minutolo (2015) used a combined ANN-GARCH
model to forecast gold spot and future price realized volatility. They
found that including a GARCH forecast as input to an ANN, in addition
to other macroeconomic variables, improved its forecasting perfor-
mance measures over a regular GARCH approach. Also within gold
price forecasting, Vidal and Kristjanpoller (2020) combined a CNN
with a LSTM in order to include images of the realized volatility
time series. They use this to forecast the LBMA gold price realized
volatility, and compare their approach with several econometric and
ML models, including an ANN-GARCH hybrid. Using both a statistical
and performance related error measurement, they found that their
proposed model outperforms all benchmark models.

General Model Assessment
In the final category we place papers where the main task was

concerned with investigating a given model, and their method did not
fit with the two aforementioned criteria. Tissaoui et al. (2022) used
SVR and XGB to forecast the OVX, and compared their models against
an ARIMAX model. Their out-of-sample results implied that XGB and
SVR provided superior forecasting performance compared to ARIMAX.
Additionally, they found that investor uncertainty related measures
were important predictors for forecasting the OVX.

Lu et al. (2022) used machine learning models to predict the
monthly realized volatility of WTI futures. They compared the machine
learning models against several AR(3) models with different extensions
using the out-of-sample 𝑅2 and MSPE, and found that particularly
andom forest, boosting, ANN-related and ensemble models had rel-
tively better performance in predicting the realized volatility of oil
utures. Zhang, Wahab et al. (2022) also tried to forecast monthly
ealized volatility of WTI futures by using supervised PCA with variable
election. They compared the model against an AR, LASSO, ENet and
itchen sink model variant and found that their proposed approach
utperformed all other models both in-sample and out-of-sample. Ad-
itionally, they used a portfolio exercise, see Bollerslev et al. (2018),
o evaluate each models economic performance, and found that the
CA-VS model delivers the greatest average realized utility.

Christensen et al. (2022) studied a broad range of machine learn-
ng and HAR-RV models to forecast the realized volatility of several
IJA constituents. For shorter forecasting horizons, they found ma-
hine learning models capturing non-linearities to be superior. When
ncreasing the forecasting horizon, random forest and ANN proved to
e the best models for approximating a long-term structure in realized
olatility. Finally, they used a VaR analysis to examine the economical
tility of each model, and concluded that the basic HAR was hard
o beat in this framework. However, the difference in performance
etween HAR-RV and the machine learning models was not substantial.
ncluding more exogenous variables let the machine learning models
eliver more precise measures for VaR.

To predict the realized volatility of several NYSE assets, Grigo-
yeva et al. (2014) examined reservoir computing ANNs and compared
hem against a VEC(1,1)-model. They found that the machine learning
pproach results in systematically better results compared to the VEC-
ARCH model by the MSFE metric. Vrontos et al. (2021) compared

everal different machine learning models in predicting the direction
f the VIX index. They compared the machine learning models against
arious logistic regression models, and based on numerous statisti-
al evaluation measures found that the machine learning approach
roduced better results for out-of-sample forecasts.

Bucci (2020) examined the performance of neural networks in pre-
icting the S&P 500 monthly realized volatility. They compared regular
12
feed-forward NNs, ENN, JNN, LSTM and NARX-SP against ARFIMA,
LSTAR and HAR-RV. Additionally, they included variants with and
without exogenous macroeconomical and financial variables to further
examine the resulting forecasting performance. They concluded that
NNs, particularly LSTM and NAR, outperformed classical methods.
However, the HAR model also provided good results, especially when
increasing the forecasting horizon. When comparing against a bench-
marking random walk, the HAR and NARX outperformed the other
models by the most significant margin.

Utilizing ANN and LSTM using different preprocessing methods
(Chen & Hu, 2022) compared different models for forecasting the
realized volatility of both CSI 300 and S&P 500 futures. These were
compared against a benchmark AR and EGARCH model with respect
to different loss functions. The best overall models was the ANN
and LSTM, both using PCA, and LSTM performed better for more
statistically complex data.

Ghosh and Sanyal (2021) examined the predictability of market
fear in India during the Covid pandemic through the India VIX. They
combined the Boruta algorithm for variable selection with XGB, ERT,
DNN and LSTM, and claimed they are successful in precise estimation
of future India VIX. Further, through an MCS test procedure they
conclude that XGB provides the best forecasting performance out of the
selected models. Using option data, Osterrieder et al. (2020) utilized
NNs to replicate the CBOE VIX, and consequently check for arbitrage
opportunities. By training an LSTM model on S&P 500 options, they
were able to outperform a naive approach using the previous lagged
VIX value as its forecast and a random forest model. They specified
how this method, by utilizing the intradaily deviations between VIX
and its futures, might be used to find arbitrage opportunities.

Finally, Petrozziello et al. (2022) compared R-GARCH and GJR-
MEM against a univariate and multivariate LSTM for forecasting the
realized volatility of stocks from NASDAQ and DIJA. They found that
LSTM had better forecasting performance during periods of high volatil-
ity, and comparable during more tranquil periods. They concluded
that a multivariate LSTM better captures the spillover effects between
assets, thereby its improved performance when forecasting volatility for
multiple assets.

4.3. Comparisons of machine learning and econometric models

The majority (26) of the papers reviewed use realized volatility
as an estimator or a proxy for the true volatility (see Appendix A).
The minority of papers conduct a directional approach where the
interest lies in predicting the direction of the volatility the next time-
period (day, week, month). The more common approach is a regression
problem, for which the HAR-RV model is a commonly used benchmark.
Many findings suggest that this model is a quite good short-term
prediction model (Christensen et al., 2022; Gkillas et al., 2021), some
also report good results for long-term forecasting (Bucci, 2020). This
is consistent with the conclusions of Corsi (2009) when proposing the
model as a good performing long-memory model, despite its simple and
parsimonious nature. When comparing the predictability of models, it
is common to compare proposed models to well-known benchmarks.

Jia and Yang (2021) criticize the approach where machine learning
methods are directly compared to GARCH-like econometric models,
as it introduces two disadvantages. This approach is similar to many
of the discussed papers, where historical data is used as input to
forecast volatility, then the machine learning models are trained using
distance based loss functions to obtain an optimized solution to forecast
realized volatility. These forecasts are then compared point-to-point to
the observed realized volatility. The first of the criticized problems is
that volatility is always changing and a latent variable, hence, realized
volatility is still just a statistical estimation of the true volatility. In
other words, the machine learning methods are trained to predict
volatility with errors. The second problem is the way econometric mod-

els estimate their parameters by maximizing the likelihood differs from
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the distance-based optimization in the machine learning approach. The
out of sample evaluation using distance-based performance criteria is
therefore only consistent with how the machine learning methods are
trained.

To address the first issue, it is important to have in mind that since
volatility is latent and not observable, one will never have perfect
estimation techniques of the true volatility unless under ideal theo-
retical assumptions. These theoretical assumptions will arguably rarely
happen in real world applications. Thus, we will never have perfect
prediction or forecasting models which perfectly fit the true volatility.
What might then be even more important is how the models and their
predictions will help us reach a given end goal in an applied situation.
This entails evaluating models from an economic point of view, measur-
ing its performance through trading strategies and assessing the results.
As outlined in Table 3, eight papers included such an analysis, albeit
through different means. Petrozziello et al. (2022) and Christensen
et al. (2022) utilized the VaR or CVaR framework for their analysis,
rooted in their use of multiple assets, where the latter proved that
even untuned nonlinear machine learning algorithms were able to give
good VaR estimates. Meanwhile, Çepni et al. (2022), Liu et al. (2018),
Vrontos et al. (2021) and Zhang, He et al. (2022) based their evaluation
on a more direct trading strategy, either using the historical data, or
through the use of Monte Carlo simulations. Finally, Persio et al. (2021)
utilized the VolTarget strategy to assess the economic implications of
their model. In particular, the trading strategy experiments of Liu et al.
(2018) demonstrates the necessity of making an economical evaluation.
RNN provided better statistical error measures than a benchmark HAR-
RV jump model for most of their forecasting experiments, but in terms
of financial performance no model clearly dominated the other. Thus,
evaluating from an economical perspective might yield different results,
and can help assess the practical implication of a given model.

Regarding the second issue, it will mainly be applicable when
directly comparing to general GARCH-model which implicitly uses
squared returns as a proxy for the volatility, especially in a high-
frequency setting. Andersen et al. (2001b) describe this as GARCH
having an inability to adapt to high frequency data. They emphasize
that this does not reflect a failure of the GARCH-model, but rather
the efficacy of exploiting the volatility. The slowly decaying weighted
moving averages of past squared returns adapts only gradually to
volatility movements, opposed to machine learning methods trained
with a realized volatility proxy. Additionally, some of the machine
learning models will also be able to benefit from the ability to account
for non-linear features in the realized volatility. This confirms a rather
unfair comparison for short horizon forecasting in high-frequency envi-
ronments. Yao et al. (2017) do one-hour- and one-day ahead forecasts
of realized volatility comparing a autoregressive neural network en-
hanced two-component GARCH-models to traditional GARCH and a
two-component GARCH. This relatively short forecasting horizon in
combination with the high frequency might impose these comparable
issues, as the results shows even larger difference in RMSE for the
shortest horizon in favor of the hybrid model built directly on real-
ized volatility. However, in the reviewed papers, the more common
approach is to compare with benchmark models which are built directly
for the realized volatility proxy.

Frequency of Data and Forecasting Horizon
There are several issues related to microstructure problems that

can arise when estimating realized volatility. One problem is the pres-
ence of transaction costs and bid–ask spreads, which can affect the
prices of assets and introduce estimation errors. Another problem is
the impact of market microstructure events, such as order imbalances,
order cancellations and trading halts, which can also introduce bias.
Consequently, when realized volatility is implemented in practice, the
price process is often sampled sparsely to strike a balance between
increased accuracy from using higher frequency data and the adverse
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effect of microstructure (Liu et al., 2015).
We can see from Fig. 9 that only 14 of the studies use intradaily
observations. Within these, 5 min intervals are the most common used
frequency. Liu et al. (2015) find little evidence that the 5 min realized
volatility estimate is outperformed by other measures, which suggests
its popularity. The high sampling frequency gives high accuracy in
the volatility estimation and is appropriate for capturing the short-
term dynamics of volatility. AI and machine learning models that are
able to capture the additional information provided by the intradaily
sampling will then be able to make more accurate forecasts in the short
term horizons. This was demonstrated by Christensen et al. (2022),
Higashide et al. (2021) and Liu et al. (2018) in their 1-day-ahead
forecasts.

When considering longer forecasting horizons, the inclusion of ex-
ogenous data seems increasingly important. Song et al. (2022) demon-
strated this by combining GARCH-MIDAS and a GRU model, and ob-
taining a significant reduction in the average MSE for 5-day ahead
forecasting. As the GARCH-MIDAS exploited macroeconomic data, this
result is twofold: it highlights the potential of hybrid models, and the
benefits of exogenous data when increasing the forecasting horizon.
Another illustration was done in Christensen et al. (2022), were longer
forecasting horizons yielded significant benefits for the NN and RF
models incorporating exogenous data. Finally, when comparing with
an AR benchmark, Çepni et al. (2022), Gupta et al. (2021), Gupta and
Pierdzioch (2022), Zhang, He et al. (2022) and Zhang, Wahab et al.
(2022) all found that the models including additional data improved
in tandem with an increasing forecasting horizon. These findings align
with the general notion that exogenous data can assist in uncovering
nonlinear long-term interaction effects between different predictors for
volatility.

However, in spite of the results favoring realized volatility the afore-
mentioned problems remains a nuisance. With the micro-structural
problems in mind, the accuracy of the realized volatility as an esti-
mator of the true volatility is dependent on the sampling frequency,
forecasting horizon, and the liquidity of the underlying asset. Thus,
when forecasting volatility, the researcher needs to make decisions
regarding the sampling frequency, aggregation method, filtering and
error handling. These effects becomes more pronounced as the sam-
pling frequency increases, further complicating the forecasting process.
Consequently, there might be a heightened risk of spurious estimation
results, thereby weakening any proposed model built upon this estima-
tor. Therefore, it is not consistent like another volatility proxy such as
an implied volatility index.

Implied Volatility Indices
Out of the reviewed papers which did not use realized volatility

as a proxy, an implied volatility index is used instead. Here, none of
the papers use autoregressive conditional heteroskedastic models as
benchmarks. This is due to the fact that it is directly observed and not
an estimation based on returns like realized volatility. Thus, it would
not make sense to use such conditional models. Another important
aspect is the fact that implied volatility is often larger than the volatility
obtained using a GARCH-model. This could either be because of the risk
premium for volatility or the way daily returns are calculated (Tsay,
2010). The proposed benchmark models used in forecasting volatility
indices are ARIMAX, an ARIMA model with additional explanatory
variables, as well as AR-models. We observe less incentives to compare
machine learning models with econometric models when using an
implied volatility index as a proxy, see Ghosh and Sanyal (2021),
Prasad et al. (2022) and Vrontos et al. (2021). Some use the naive
prediction which consists of just using the current VIX value as the
forecast for the next time-step, see for instance Osterrieder et al. (2020).

Tsay (2010) points out the unobservability of volatility which makes
it difficult to evaluate the forecasting performance of conditional het-
eroskedastic models. Since implied volatility indices are directly ob-
served, an accurate prediction of such index could then introduce
arbitrage opportunities, as proposed by Osterrieder et al. (2020). Di-

rectional approaches for both implied volatility index- and realized
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volatility prediction also provide more intuitive performance measures,
however these results also depend on how they are used. This also
points back to our previous points in which it is important how the
models and their predictions will help us reach a given end goal in an
applied situation. The VIX can be especially attractive in this regard,
since the VIX futures allows for direct trading evaluation of a forecast.

In total, six papers studied forecasting of an implied volatility index,
where Oliveira et al. (2017) concurrently predicted the realized volatil-
ity of some stocks. Thus, a mere five papers concentrated their efforts
on investigating the use of ML and AI for implied volatility forecasting.
In light of the findings of Dai et al. (2020), implied volatility might
have significant predictive power of stock return volatility. In the same
vein, Christensen et al. (2022) found the VIX to be among the top
ranked variables from their variable importance analysis. Addition-
ally, Tissaoui et al. (2022) and Zhang, Wahab et al. (2022) found VIX
to be one of the most important predictors for forecasting the OVX and
WTI monthly realized variance, stressing its efficacy as an oil volatility
predictor. However, the general literature remains inconclusive on its
predictive power, see e.g. Becker et al. (2007). Thus, the paucity of this
subject underlines a need for more research in this area, particularly
compared against realized measures.

4.4. Use of XAI and explainability of models

With the advent of AI and ML methods as mainstream techniques
in a plethora of disciplines, there has been some concerns regarding
their rising popularity. Many AI methods can act as black boxes.
Interpreting the models can be challenging, and it may be difficult
to make inferences about the underlying interaction of features. Thus,
the practicality of AI’s ability to capture nonlinear relationships is
somewhat hampered by their black-box nature. Neural networks and its
family of models are particularly prone to this effect. Despite yielding
superior results, Bucci (2020) highlights some of the disadvantages
with their use of neural networks. The number of parameters to be
estimated is substantially larger than its econometric counterparts, and
the interpretation of causal relationships between variables cannot be
easily performed. In tandem with the establishment of practical AI
guidelines from several governmental institution, the need for explain-
ability has become increasingly important. This has motivated the use
of the Explainable Artificial Intelligence (XAI) framework to shed light
on the underlying interactions of AI models.

In our sample, four papers employed XAI methods to analyze their
findings. This was done using the Shapley framework and accumulated
local effect, allowing the authors to assess the relative impact of each
variable when for model predictions. Tissaoui et al. (2022) utilized
Shapley values to determine the feature importance of their variables
in predicting the OVX during two different regimes – before and during
the Covid-19 pandemic – and found that VIX had the most impact
on their predictions during both periods, but EPU played a larger
part under Covid-19. Further, Christensen et al. (2022) employed the
accumulated local effect to assess variable importance, and discovered
that the ML models utilized implied volatility to a higher degree
than its econometric counterparts. Lu et al. (2022) found that one
lag of the monthly realized variance of WTI futures dominated the
other variables with respect to the variable importance, but other
variables provided significant contributions. Ghosh and Sanyal (2021)
used both the Shapley and Lime framework in their forecasting ex-
periments, and found that lagged values of the India VIX had the
highest importance. However, many other variables played a large role
in predictions, emphasizing a need for exogenous data when forecasting
implied volatility.

As mentioned earlier, the use of exogenous data is especially useful
for longer horizons. However adding more variables increases the
complexity of the models. This makes the models difficult to interpret,
which can make it challenging to understand the relationships between
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the variables and draw meaningful conclusions. Another consequence
of too many additional variables is that it can lead to unreliable results,
that is, when small changes in the data can have a significant impact
on the model’s performance. This further motivates future applica-
tions of XAI within AI and machine learning models as it can be
necessary to identify key drivers of the volatility. This is of particular
relevance when volatility forecasts are interpreted as early warnings
of increased systemic risk, including contagion in financial markets.
Additionally, as mentioned above, influence from institutions such
as European Commission and Directorate-General for Communications
Networks, Content and Technology (2019) will continue to promote
further research and development in the field of XAI.

5. Conclusions

In this study we perform a systematic review of realized and implied
volatility forecasting using artificial intelligence and machine learn-
ing methods. More specifically, we investigate how these models fare
against the more traditional econometric approaches, the motivation
for forecasting volatility, the markets under study, and whether AI and
machine learning actually lends itself towards volatility forecasting.

We perform an extensive search through four major databases in
scientific literature, and consequently exclude papers not fitting our
topics, ending up with a final sample of 32 papers. We summarize
their methods and findings, and provide descriptive statistics about
the sample. Here, we find that the majority of the markets investi-
gated are the US equity market, followed by oil and foreign exchange
markets. Furthermore, we find the use of exogenous data valuable
for the forecasting exercise, especially for longer forecasting horizons.
In particular, the inclusion of predictors handling different aspects of
uncertainty through newspaper-based indices yields favorable results.
With the potential of extracting high-frequent public sentiment data
from the web, this encourages more research into uncovering potential
contemporaneous and long-term links to volatility.

Generally, we find the efficacy of AI and ML methods for volatility
prediction to be highly promising, often providing comparative or
better results than their econometric counterparts. Their capability
of handling non-linear relationships, correlated predictors and large
volumes of exogenous variables make them attractive options for fu-
ture research within volatility forecasting. Neural networks employing
memory consistently ranked among the top performers, where LSTM,
GRU and reservoir computing proved apt in their ability to forecast
volatility. Additionally, tree-based methods like boosting and RF were
popular models, being able to handle large amount of external data
to good results. However, traditional econometric models such as the
HAR-RV are still highly relevant, commonly yielding similar results
as more advanced ML and AI models. In light of the success with
ensemble methods, a promising area of research is the use of hybrid
models, as they have been shown to beat its constituting models on
many occasions.

We also discuss some issues regarding comparison of models based
on the volatility proxy of choice. Models are often designed around
a specific process, and failing to account for this can provide unfair
results. Furthermore, we discuss the issue of volatility and its latent
nature, and how this complicates the modeling comparison process.
This prompts us to recommend more focus be directed towards al-
ternative evaluation methods, either by the way of robustness checks
or through practical applications such as trading strategies. We also
suggest that more focus should be aimed at investigating implied
volatility forecasting using AI and ML, as the current literature to a
large extent deals with forecasting realized volatility.

Another point of discussion revolves around explainability. ML and
AI are particularly susceptible to issues surrounding this concept. This
also become an issue when adding variables to econometric models
in addition to unstable models. However, the issues could be less
troublesome for ML and AI models with future developments within

XAI. We find that very few papers included XAI to combat this, and
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Table 3
A brief summary of all the featured studies in this paper.

Reference Target
/Proxy

Asset Extra
data

Sampling
Horizon

Proxy
Freq

Main
Method/s

Benchmark Performance
measures

Financial
evaluation

Vrontos et al. (2021) VIX
(Dir)

S&P 500 31 macroeconomic,
financial market related
indicators

01.01.1990
–
01.12.2019

Monthly Naive Bayes,
Ridge deviance,
ADABoost,
Discriminant
analysis

Various LR
models

ROC(AUC),
MCE, Accuracy,
Kappa statistic,
Sensitivity,
Precision, F1,
Balanced accuracy

Annual return,
Annual risk,
Sharpe ratio,
Sortino ratio,
Downside risk,
Avg. drawdown
Alpha, Beta

Petrozziello et al. (2022) RV
(Kern.
est.)

SPY, assets
from
DJIA,
NASDAQ
100

None 01.01.2002
–
31.08.2008
and
01.12.2012
–
29.11.2017

Daily Univariate and
multivariate LSTM

R-GARCH,
GJR-MEM

MSE, QLIKE,
Pearson
correlation
index, DM

VaR, CVaR

Luong and Dokuchaev (2018) RV,
RV
(Dir)

S&P,
ASX 200

Converted RV into
technical indicators

01.01.2008
–
31.12.2014

Daily RF and
HAR-RV hybrid

HAR-JL
estimated
using MLE

Accuracy, MAE,
MAPE, RMSE,
RMSPE

None

Tissaoui et al. (2022) OVX USO ETF VIX, Lags, IDTI,
EPC, EPU,
GRI (VIX, lags
and various
uncertainty-related
indices)

01.01.2010
–
01.08.2021

Daily SVR and XGB ARIMAX JB, MSE,
RMSE, R2

None

Song et al. (2022) RV Shanghai
composite
index

Technical,
macroeconomical
and financial indicators

26.11.2012
–
20.11.2020

Daily SVM, RF, XBG,
LSTM, GRU
hybrids using
GARCH-MIDAS
as inputs

HAR-RV KS test, MSE,
RMSE, MAE,
SMAPE, RMSPE,
DM test

None

Christensen et al. (2022) RV DJIA
constituents

IV, VIX, financial and
macroeconomical
variables

29.01.2001
–
31.12.2017

Daily RF and NN HAR-RV,
LogHAR,
LevHAR,
HARQ

MSE, DM, MCS VaR

Liu et al. (2018) RV S&P 500 SPY, VIX, VXX, ETN
(Not used for training,
only financial evaluation)

02.01.1996
–
02.06.2016

Daily RNN and
hybrid
RNN/HAR-J

HAR-J,
LogHAR-J

RMSE, MAE,
MAPE

Annual return,
Ann, volatility,
Sharpe ratio

Çepni et al. (2022) RV WTI State-level and national
EPU of US

01.01.1984
–
12.01.2019

Monthly AR (OLS), Lasso,
RF (AR model,
but RF/Lasso
estimation
technique)

AR using
OLS without
uncertainty
variables

R2 for SE and
AE,
General loss
function
(Patton 2011)

Accumulated
profits of
option
portfolio

Gkillas et al. (2021) RV Bitcoin Total number of
Bitcoin transactions

01.01.2014
–
07.03.2020

Daily RF/HAR-DUJ
hybrid

GARCH(1,1),
HAR-RV,
HAR-RV-DUJ

CW test, DM,
MSPE

None

Yao et al. (2017) RV EUR/USD,
BBP/EUR,
GBP/JPY,
GBP/USD
FX

None 27.09.2009
–
12.08.2015

Hourly,
Daily

NN and Enhanced
two-component
NN

Two-component
GARCH,
EGARCH

RMSE None

Bouri et al. (2020) RV Bitcoin Google trends 01.07.2017
–
30.06.2019

Daily RF Various
HAR
variants

DM, Abs and
quad loss for
unscaled
and scaled
forecast errors,
Pseudo R2, CW

None

Gupta and Pierdzioch (2022) RV WTI State-level and
national EPU of US

01.01.1985
–
01.08.2021

Monthly AR
(OLS, Lasso
and RF)

AR without
uncertainty

RMSFE, MAFE,
CW, DM

None

Plakandaras et al. (2017) RV USD/BPD
FX

Brexit-related EPU
and US-related EPU

01.01.2001
–
08.08.2016

Daily SVR variants OLS/SVM
with simple
AR-term

RMSE None

Higashide et al. (2021) RV
(Dir)

Nikkei
stocks

Market volume data,
stock full-board dataset,
TSE Co-Location data

01.03.2012
–
31.10.2019

Daily RF/HAR hybrid HAR-RV
w/ logistic

F-measure None

Oliveira et al. (2017) VIX,
RV

S&P 500,
RSL,
DJIA,
NDQ

VIX, Twitter data,
sentiment values

01.01.2012
–
01.10.2015

Annua-
lized
daily

MR, NN, SVM,
RF, EA
(Ensemble avg)

AR(5) NMAE,
DM

None

Gupta et al. (2021) RV DJIA 134 macroeconomic and
148 financial variables,
AAII investor sentiment
survey, 4 investor
confidence indices

01.06.2001
–
01.06.2020

Monthly RF/HAR-RV
hybrid

HAR-RV RMSFE,
R2

None

Grigoryeva et al. (2014) RV NYSE
assets

None 06.01.1999
–
31.12.2008

Daily Reservoir
computing (RNN)

VEC(1,1) Standardized
MSFE

None

Prasad et al. (2022) VIX
(Dir)

S&P 500 Macroeconomical and
financial variables

01.05.2007
–
01.12.2021

Daily,
Weekly

Logistic regression,
LGBM, XGB

None Accuracy,
precision, recall,
F1, MCC, t-test

VolTarget

Persio et al. (2021) RV S&P 500 None 01.01.2000
–
01.01.2020

Monthly LSTM/
GARCH(1,1)
hybrid

GARCH(1,1) MSE, MAE,
MAPE

None

Lu et al. (2022) RV WTI
futures

Macroeconomical and
financial variables

01.04.1986
–
30.09.2020

Monthly SVR, KNN, Enet,
LASSO, Ridge,
RF, ET, Bagging,
Adaboost, GBR,
FCNN, CNN,
C-LSTM

AR(3) using
different number
of variables

MSPE,
R2

None

(continued on next page)
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Table 3 (continued).
Qiu (2021) RV Bitcoin None 01.09.2017

–
20.12.2018

Daily Complete subset
LSSVR,
LSSVR

HAR-RV MSFE,
SPA test

None

Bucci (2020) RV S&P Macroeconomical and
financial variables

01.02.1950
–
31.12.2017

Monthly ANN, ENN, JNN,
LSTM,
NARX-SP

AFIMA,
LSTAR,
HAR-RV

MSE, QLIKE,
MCS, DM-test,
Encompassing
test

None

Chen and Hu (2022) RV CSI300,
S&P 500
futures

7 major stock indices
in China, and six major
stock indices in US

01.01.2011
–
31.12.2018

Daily ANN, LSTM AR, EGARCH MSE, MAE,
MNMSE

None

Zhang, He et al. (2022) RV WTI GEPU index, 15 ind-
ividual EPU indices,
14 economic vars,
6 uncertainty vars

01.01.1985
–
31.12.2019

Monthly PLS AR, HAR R2, OS, CW-test Avg. return,
St. deviation,
Sharpe ratio

Zhang, Wahab et al. (2022) RV WTI
futures

127 macroeconomic
variables

01.01.1985
–
31.12.2018

Monthly Supervised PCA AR, PCA,
LASSO,
ENET

R2, MSPE,
CW, Newey–
West t-stat

None

Ghosh and Sanyal (2021) India
VIX

India
VIX

9 macroeconomical and
11 technical indicators,
8 GSVI variables

01.03.2020
–
31.05.2021

Daily XGB, ERT,
DNN, LSTM

None NSE, IA, TI,
DA, MCS

None

Osterrieder et al. (2020) VIX VIX SPX options 02.01.2018
–
02.28.2018

Seconds LSTM, RF VIX MSE None

Kristjanpoller and Minutolo (2015) RV Gold
Spot,
Gold
future

DJI, EUR/USD,
USD/Yen FX,
FTSE, WTI

06.09.1999
–
20.03.2014

Daily ANN/GARCH
hybrid

GARCH MSE, RMSE,
MAE, MAPE

None

Ribeiro et al. (2021) RV CAT,
EBAY,
MSFT

None 549 weeks Daily HAR-PSO-ESN
hybrid

ARIMA,
HAR,
MLP,
PSO-ESN

Friedman-test,
Post-hoc
Nemenyi test,
R2, MSE

None

Vidal and Kristjanpoller (2020) RV LBMA
gold
price

None 01.04.1968
–
01.10.2017

14-day CNN-LSTM GARCH,
SVR,
LSTM,
CNN

MSE, MCS None

Kim and Won (2018) RV KOSPI
200

None 01.01.2001
–
02.01.2017

Daily LSTM,
GARCH,
EGARCH,
EWMA hybrid

EGARCH,
EWMA,
DFN,
LSTM

MSE,
MAE,
HMAE,
HMSE,
DM-test,
WS-test

None

Zolfaghari and Gholami (2021) RV DJIA,
IXIC

Dollar index,
WTI, Trading
indicators

04.01.2020
–
31.12.2020

Daily AWT-LSTM,
HAR-X-RV
hybrid

ANN-
HAR-
X-RV

R2, RMSE,
MAE, SMAPE,
DM-test,
ADM-test

None
recommend that future work should strive harder to employ it in their
models.

Volatility prediction and forecasting using AI and machine learning
are not new concepts. However, as documented in this review, the
scientific literature in this combined field is currently not very mature.
As is the case in many topics in finance, the academic literature centers
around U.S. markets, predominantly equities and oil. Hence, many of
the papers discussed in this review can be used as a starting point for
further research in order geographical areas and other asset classes.
This will shed light on the generality of the findings in the current liter-
ature. Various forms of artificial neural networks (ANNs) have proven
to be effective in prediction and forecasting of volatility, as well as
being able to compute precise VaR measures — the latter of significant
importance for financial risk management. As discussed, it is very hard
to achieve extremely precise predictions of the volatility estimators,
and even more so the true volatility. Therefore, it might be beneficial
to quantify the uncertainty related to the volatility forecasts provided
by the models. We find very limited application of probabilistic AI
in the current literature. Consequently, an interesting field for further
research is to implement the most promising models within a Bayesian
framework, for instance as Bayesian Neural Networks. This will enable
quantification of the uncertainty introduced by the models in terms of
outputs and weights to explain trustworthiness of the predictions.

CRediT authorship contribution statement

Elias Søvik Gunnarsson: Data curation, Methodology, Software,
Formal analysis, Investigation, Writing – original draft. Håkon Ra-
mon Isern: Data curation, Methodology, Software, Formal analysis,
Investigation, Writing – original draft. Aristidis Kaloudis: Conceptual-
ization, Validation. Morten Risstad: Writing – original draft, Writing
– review & editing. Benjamin Vigdel: Conceptualization, Data cu-
ration, Methodology, Software, Formal analysis, Investigation. Sjur
Westgaard: Conceptualization, Validation.
16

r

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This research was partially funded by The Research Council of
Norway throughout the project COMPAMA (https://www.ntnu.edu/
compama/), with grant number 314609.

Appendix A. Realized volatility

Andersen and Bollerslev (1998) state that there is no contradic-
tion between good volatility forecasts and poor predictive power for
daily squared returns, which has widely been used as a measurement
and proxy for volatility when evaluating traditional GARCH-based
econometric models. This is demonstrated by how high-frequency in-
traday data may be used to construct a more accurate and meaningful
interdaily volatility measurement using cumulative squared intraday
returns. Corsi (2009) defines the standard definition of the realized
volatility over a time interval of one day as

𝑅𝑉 (𝑑)
𝑡 =

√

√

√

√

√

𝑀−1
∑

𝑗=0
𝑟2𝑡−𝑗⋅𝛥, (A.1)

where 𝛥 = 1𝑑∕𝑀 , and the continuously compounded 𝛥-frequency

eturns, i.e. the intraday returns sampled at time interval 𝛥, is 𝑟𝑡−1⋅𝛥 =

https://www.ntnu.edu/compama/
https://www.ntnu.edu/compama/
https://www.ntnu.edu/compama/
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Table 4
A brief summary of the main results of all featured studies in this paper.

Reference Main result

Vrontos et al. (2021) Compare several machine learning models against various logistic regression models in predicting the direction of
the VIX index. Based on numerous statistical evaluation measures they find that the machine learning approaches
produced better results for out-of-sample forecasts.

Petrozziello et al. (2022) Compare R-GARCH and GJR-MEM against a univariate and multivariate LSTM for forecasting the realized volatility
of stocks from NASDAQ and DIJA. They report that LSTM has better forecasting performance during periods of high
volatility, and comparable during more tranquil periods. Conclude that a multivariate LSTM better captures spillover
effects, hence the improved performance when forecasting volatility for multiple assets.

Luong and Dokuchaev (2018) Improves forecasts of realized volatility on S&P500, including directional changes, by including implied volatility in
a random forest framework.

Tissaoui et al. (2022) Compared model performance and variable importance before and during Covid-19 to assess different drivers of
volatility. Find that different XGB performs better turbulent periods while SVM fared better for the more tranquil
decade leading up til 2020.

Song et al. (2022) Predicting the SSE Composite Index realized volatility, they find that LSTM, GRU and XGB produce the lowest
forecasting errors. All machine learning models benefit from including short-term GARCH-MIDAS volatility forecasts.
GRU is the overall best performer.

Christensen et al. (2022) Study a broad range of machine learning and HAR-RV models to forecast the realized volatility of DIJA constituents.
They find machine learning models capturing non-linearities to be superior for short-term forecasts. When increasing
the forecasting horizon, random forest and ANN prove to be best.

Liu et al. (2018) Use RNNs in combination with HAR-RV-Jump models to forecast S&P500 volatility. RNNs is preferred when data is
sparse.

Çepni et al. (2022) Find that uncertainty-related measures in RF and LASSO models improve long-term WTI realized volatility forecasts,
compared to an AR benchmark.

Gkillas et al. (2021) Explore the relative importance of volume-related predictors when forecasting the realized volatility of Bitcoin.
Report consistent results for RF and HAR-RV-Jump models.

Yao et al. (2017) Develop a hybrid ANN-AR model which is superior various GARCH specifications for forecasting foreign exchange
rate volatility on hourly and daily basis.

Bouri et al. (2020) Study the impact of US–China trade war uncertainty in relation to Bitcoin volatility using RF. Report beneficial
effects of including Google-search trends, also when RF is compared to various HAR-RV specifications.

Gupta and Pierdzioch (2022) Building on Çepni et al. (2022) they report further improvements in long-term oil price volatility forecasts when
including geopolitical risk indices.

Plakandaras et al. (2017) Use SVR variants to determine that EPU related to Brexit had an effect on USD/GBP exchange rate realized
volatility forecasts.

Higashide et al. (2021) Forecasting the direction of Nikkei realized volatility they report that including certain exogenous variables is more
beneficial in for random forest models compared to a hybrid HAR model.

Oliveira et al. (2017) Use Twitter data with sentiment values to deduce whether they have an effect on forecasting VIX and the
annualized RV on the S&P 500, RSL, DJIA and NDQ. Compare several ML models against each other and an AR(5)
benchmark model, report that inclusion of sentiment variables does generally not lead to forecast improvements.

Gupta et al. (2021) Find that combining investor sentiment related data in addition to macroeconomical and financial data improved
the forecasting performance of their suggested random forest and hybrid HAR models for shorter and intermediate
DIJA forecasts.

Grigoryeva et al. (2014) Examine reservoir computing ANNs compared to a VEC(1,1)-model when predicting the realized volatility of several
NYSE assets and report systematically better results.

Prasad et al. (2022) Examined the impact of including macroeconomical variables when predicting the direction of the VIX. Using
logistic regression, LGBM and XGB, they find that the two latter models with the exogenous data give better daily
and weekly forecasts.

Persio et al. (2021) Employ a hybrid LSTM-GARCH(1,1) model in a volatility target investment strategy, reporting improved
risk-adjusted returns.

Lu et al. (2022) Compare machine learning models to predict the monthly realized volatility of WTI futures. Report that particularly
random forest, boosting, ANN-related and ensemble models perform better relative to several AR(3) models with
different extensions.

Qiu (2021) Proposed a method for combining forecasts based on complete subset least squares vector regressions as an
estimator for the HAR-RV model. Report improved out-of-sample forecasts on horizons from one day to one month.

Bucci (2020) Use a subsample of the Tissaoui et al. (2022) data to assess the robustness of the overall results, finding generally
equivalent results.

Chen and Hu (2022) Reports superior CSI 300 and S&P 500 futures volatility forecasting results for ANN and LSTM compared to AR and
EGARCH across loss functions.

(continued on next page)
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Table 4 (continued).

Zhang, He et al. (2022) Suggest a modified Partial Least Squares approach to construct an aligned GEPU index targeted on the residuals of a
simple AR model. Report substantial benefits for forecasting realized variance of oil prices.

Zhang, Wahab et al. (2022) Forecast monthly realized volatility of WTI futures by using supervised PCA with variable selection. Report
increased statistical and economic performance compared to AR, LASSO, ENet and kitchen sink models both
in-sample and out-of-sample.

Ghosh and Sanyal (2021) Use XGB, ERT, DNN and LSTM and obtain precise estimates of future India VIX. By means of the MCS test they
conclude that XGB is superior.

Osterrieder et al. (2020) Utilize NNs to replicate the CBOE VIX. By training an LSTM model on S&P 500 options they devise a profitable
trading strategy driven by intradaily deviations between VIX and its futures.

Kristjanpoller and Minutolo (2015) Use a combined ANN-GARCH model to forecast gold spot and future price realized volatility. They report that
including a GARCH forecast as input to an ANN, in addition to other macroeconomic variables, improve
performance compared to GARCH.

Ribeiro et al. (2021) Use a combined HAR-PSO-ESN hybrid to forecast daily realized volatility of three Nasdaq stocks. Compared to
multiple machine learning and econometric models, the proposed HAR-PSO-EN leads to statistically significant
better results across different horizons.

Vidal and Kristjanpoller (2020) Utilize image data of the time series of LBMA gold price evolution in a combined CNN-LSTM approach and find
superior realized volatility forecasting performance.

Kim and Won (2018) Combining various GARCH specifications and LSTM in a deep feed forward network they report that two or
GARCH-models in combination with LSTM provides the best forecasting results on the KOSPI 200 index.

Zolfaghari and Gholami (2021) Evaluating AWT-LSTM and HAR-RV hybrid against an ANN and HAR-RV hybrid, they find support for a
AWT-LSTM-HAR hybrid model.
t
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𝑉

f

𝑝(𝑡 − 𝑗) ⋅ 𝛥 − 𝑝(𝑡 − (𝑗 + 1)) ⋅ 𝛥, with t indexing the day and j the time of
ay; also see Andersen et al. (2001a).

ppendix B. The HAR-RV model

Corsi (2009) suggests a three-factor stochastic volatility model,
here the factors are past realized volatilities viewed at different

requencies, namely daily, weekly and monthly. The model’s equation
or the one-day-ahead realized volatility is

𝑉 (𝑑)
𝑡+1𝑑 = 𝑐 + 𝛽(𝑑)𝑅𝑉 (𝑑)

𝑡 + 𝛽(𝑤)𝑅𝑉 (𝑤)
𝑡 + 𝛽(𝑚)𝑅𝑉 (𝑚)

𝑡 + 𝜔𝑡+1𝑑 , (B.1)

with 𝜔𝑡+1𝑑 = 𝜔̃(𝑑)
𝑡+1𝑑 − 𝜔(𝑑)

𝑡+1𝑑 , which are the volatility innovations,
i.e. the difference between our best future realized volatility prediction
and what is observed. Despite the model being seen as a simple AR-
type model where a true long-term memory property is absent, it
successfully reproduces the main empirical features of financial returns
and forecasting performance (Corsi, 2009). Consequently, the model
is often used as a benchmark for volatility prediction and forecasting
using high-frequency data.

Appendix C. Volatility indices

Model-based
CBOE first introduced the VIX in 1993. Developed by Robert Whiley,

the model derived implied volatility using a linear combination of eight
near-the-money options on the S&P 100 (Whaley, 1993). The formulas
used in the construction of the index are

𝜎1 =
⎛
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𝑉 𝐼𝑋 = 𝜎1

(

𝑁2 − 22
𝑁2 −𝑁1

)

+ 𝜎2

(

22 −𝑁1
𝑁2 −𝑁1

)

. (C.3)

ere, 𝜎1 and 𝜎2 refers to the estimated implied volatility of the S&P 100
ptions with maturity just below and above 22 trading days. 𝜎𝑋𝑗

𝐶,𝑖 and
𝑋𝑗
𝑃 ,𝑖 is the implied volatility for puts and calls just above and below the
urrent index 𝑆 and time to maturity of 22 trading days. 𝑋𝑈 and 𝑋𝐿
18

re the strike prices of options with a strike price just above or below
he current index price 𝑆, respectively. The final variables, 𝑁1 and 𝑁2,
are the number of trading days to each nearby contracts maturity. As
this model relies on the Black–Scholes option pricing model and its
underlying assumptions, it is known as a model-based method.

Model-free
In 2003 the CBOE worked with Goldman Sachs to develop a new

model-free implied volatility index, based on the work of Demeterfi
et al. (1999). This methodology is centered around fair value pricing
variance swaps, and is described as a model-free methodology. By
assuming the underlying followed a non-jump diffusive process, and
using the fair value of variance swaps as the basis for their calcula-
tions, Demeterfi et al. (1999) showed that the expected value of the
risk-neutral variance Vt can be expressed as

𝑉𝑡 =
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, (C.4)

here 𝑟 is the risk-free interest rate. 𝑇 is the time of expiration of the
isted contracts, 𝑆0 is the current index price of the underlying and 𝑆∗
efines the boundary between puts and calls. Finally, K is the strike
rice of the option, while 𝑃 (𝐾) and 𝐶(𝐾) is the current fair value of
put and call. Based on these results, the CBOE updated the VIX in

003 by performing a discretization of (C.4) to compute the market’s
xpectation of future volatility. Additionally, the underlying asset was
hanged to the S&P 500. The procedure is described by the Chicago
oard Options Exchange (2022) with the following formula for the VIX

𝐼𝑋 =

(

2
𝑇

∑
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𝑖
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1
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[

𝐹
𝐾0

− 1
]2
)

⋅ 100. (C.5)

𝑇 is the time to expiration in years and 𝐹 is the forward price implied
by the option. 𝐾0 is the strike price closest to the forward index 𝐹 . By
sequentially moving away from the 𝐾0, 𝐾𝑖 is the strike price 𝑖 steps
away, and 𝛥𝐾𝑖 is the interval between strike prices. 𝑅 is the risk-
ree interest rate, and 𝑄(𝐾𝑖) denotes the midpoint between the bid–ask

spread for every option with given strike 𝐾𝑖.
The general numerical procedure of fair pricing of variance swaps

remains consistent among different indices (Fassas & Siriopoulos,
2021). Hence, the above method serves as a general foundation for
how the model-free approach is undertaken in practice.
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Table D.5
A summary of abbreviations used in this study.

Abbreviations Explanation

RF Random forest
XGB eXtreme Gradient Boost
GBM Gradient Boosting Machines
AdaBoost Adaptive Boosting
ERT Extremely Random Trees
ET Extended trees
LGBM Light Gradient Boosting Machine
ANN Artificial Neural Network
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
CNN Convolutional Neural Network
ARNN Autoregressive Neural Networks
GRU Gated Recurrent Unit
NAR Nonlinear Autoregressive Network
EN Elastic Net
SVM Support Vector Machine
LDA Linear Discriminant Analysis
KNN K Nearest Neighbors
rpart Recursive Partitioning
XAI Explainable Artificial Intelligence
PLS Partial Least Squares
OLS Ordinary Least Squares
MLE Maximum Likelihood Estimation
AWT Adaptive Wavelet Transform
PSO Particle Swarm Optimization
ESN Echo State Network
VaR Value at Risk
CVaR Conditional Value at Risk
EPU Economic Policy Uncertainty
CBOE Chicago Board Options Exchange
MSE Mean Squared Error
MAE Mean Absolute Error
RMSE Root Mean Squared Error
R2 OOS R2 Out-Of-Sample
MAPE Mean Absolute Percentage Error
MSPE Mean Squared Percentage Error
SMAPE Symmetric Mean Absolute Percentage Error
RMSFE Root Means Squared Forecasting Error
MSFE Means Squared Forecasting Error
NMSE Normalized Mean Squared Error
NSE Normalized Squared Error
IA Index of Agreement
MSD Mean Squared Deviation
TI Theil Inequality Index
DA Directional Accuracy
HMAE Heteroskedasticity adjusted Mean Absolute Error
MAD Mean Absolute Deviation
MCC Matthews Correlation Coefficient
SMSFE Standardized Means Square Forecasting Error
NMAE Normalized Mean Absolute Error
MAFE Mean Absolute Forecasting Error
RMSPE Root Mean Squared Percentage Error
PCC Pearson Correlation Coefficient
DM Diebold–Mariano test
CW Clark–West test
MCC Model Confidence Set

Appendix D. Abbreviations

See Table D.5.
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