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New Thoughts about an Old Result on
Univalent Functions

HAAKON WAADELAND, Department of Mathematical
Sciences, Norwegian University of Science and Technology,
N- 7034 Trondheim, Norway

1. Prologue.

In the theory of functions of a complex variable there are certain areas
which have attracted and challenged a large number of mathematicians.
One such area is the theory of univalent functions (or "schlicht” functions,
according to German tradition). Restricted to the most known case it
deals with functions f, analytic and univalent (one to one) in the open
unit disk U, and normalized by f(0) = 0, f'(0) = 1. The Taylor expansion
around z = 0 thus has the form

w=f(z)=z4+az’ +-- a2+, (1.1)

and converges in U. When Ludwig Bieberbach in 1916 proved that |as| <
2 and (in a foot-note) conjectured that generally |a,| < n [1] the theory
really "took off’, and it did not even stop when de Branges 68 years
after, greatly helped by Richard Askey, Walter Gautschi and, above all, a
Leningrad group of mathematicians, proved the truth of the Bieberbach
conjecture [2].

Few things are more useful in mathematics than difficult conjectures
(in particular if they have a simple appearence). Throughout the years
a large and great theory has been developed, with growth and distortion
theorems, coefficient results of different types, results for subfamilies, for
generalizations etc. Most important perhaps, is that methods have been
created, methods of value far beyond the original intention. Some results
have become classical parts of the theory, such as for instance Lowner’s
parameter method, inspired by thoughts in hydrodynamics, and Schiffer’s
two variational methods (together with other variational methods). But
most results have been small, modest contributions to the theory, indiv-
idually meaning very little, but together, in virtue of multitude and wide
scope, being indispensable in the theory.

The topic of the present paper is such a small result, being of little or
no value in itself, but of some pleasure and joy for the one who created
it, and hopefully also to the ones who have read it. The result was, at



least indirectly, inspired by Ernst Jacobsthal, who once told a young as-
sistant about univalent functions and in particular about the Bieberbach
conjecture. The assistant readily started off to prove it. After several
attempts and a lot of reading in books and papers, he realized that it
was not all that simple, and put it aside (for a while). He still, however,
maintained his interest in the field. One day he asked himself the ques-
tion: ”What is the effect on the second coefficient a; to require a3 to be
0?” The answer was written down, then supported by Jacobsthal, and
(surprisingly) approved of by Bieberbach, and turned out to be the very
first paper in this field by the young mathematician [10].

43 years later, when the young mathematician had turned into an old
mathematician, he looked again at his paper. He got some new thoughts,
where things that had happened in the field in the meantime were taken
into account. The purpose of the present paper is to tell about these
thoughts. But first we need to take a look at the old result.

2. The old result.

Let S denote the family of "normalized, univalent functions”, i. e. the
family of functions presented in the introduction, and where we have the
expansion

w:f(z):z+a222+a323+a4z4+---+anz"+---. (2.1)

Let S’ be the subfamily of S, defined by the additional requirement a3 = 0,
and hence with the expansion

w:f(z):z+a222+a4z4+---+anz"+~-. (2.1")

Two questions were asked: a) What is the best upper bound for |a;| in
S’? b) What is the best (largest) number d, such that the disk |w| < d is
contained in f(U) for all f € §'7

Remark.

If the question b) had been asked for the class S instead of S’, the
answer had been 1/4, the Koebe constant. Paul Koebe proved, already in
1907, the existence of such a positive constant [5]. The actual value 1/4
was proved by Bieberbach. The functions (the only ones) for which the
nearest boundary point of f(U) has the distance 1/4 from the origin are
the functions

z

w:k(z):(l—_z—)z—

=z4222 4323+ 4"+ (2.2)

and its rotations, i. e. the functions k4(z) := e '¢k(e'®z). These func-
tions are also the only ones for which |az| = 2. The function (2.2) is
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called the Koebe function and maps U onto the whole plane, minus a slit
from —1/4 to oo along the negative real axis. A solution to our question
b) could then be called a "Koebe result”, and the best d-value could be
called a "Koebe constant” for the family S’.

The results in the paper [10] are:
|az| < 1. (2.3)

The disk
lw] <

Q| =

is the largest disk, centered at the origin, that is contained in all sets
fU), fes.

We shall not include the proof here, only mention that it was established
by means of the Lowner method, where (among many other things) we
have, that for a dense subfamily of S the following formulas hold for the
first coeflicients:

az; = -2 /°° k(r)e Tdr, {(2.5)
0

az = 4(/ w(r)e Tdr)? — 2/ &% (r)e ?"dr, (2.6)
0 0
where k(7) is piecewise continuous and of absolute value 1, |s(7)] = 1 [7].
The bounds (2.3) and (2.4) are best possible. The extremal functions
(and the only ones) are

z

A

and its rotations. The function (2.7) maps the unit disk onto the whole
plane minus two slits, one going from —1/3 along the negative real axis
to —oo, the other one going from 1 to oo along the positive real axis.

In the paper [10] are also studied k-symmetric functions in S with
vanishing third coefficient, i. e. functions

(k) (k) _2k+1 (k) 3k+1 L.

k+1
w=gr(z) =z + a2 + + ag3112 + a5, 2 -, (2.8)

where agi)ﬂ = 0. The following sharp bound was found:

k) | o [ 2 9
Iak+1| = k(k+l) (.‘9)
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Moreover, the "Koebe constant” for this family was proved to be

/ ok —1/k
2 T . .
( + k+1) (2.10)

The only extremal functions are

w = gg(z) = ; (2.11)

and its rotations.

So far the old result. In the following we shall restrict ourselves to the
case k = 1, and we shall not be aiming at any ”Koebe result”.

3. The new thoughts.
Let M be an arbitrary number in [1,00]. An interesting subfamily of
S is the one obtained by the additional condition

If(z)l <M (3.1)

for all z € U. This family is usually denoted Sps. Two trivial cases: For
M = 1 the family consists of merely one function, f(z) = z, whereas
Soo = S. From now on we shall assume that 1 < M < oo.

The different questions dealt with in the class S are in most cases
substantially more difficult to handle in Sps. For the first two coefficients
the sharp bounds in Sps are:

1
jaz| <2(1 = 57), (8] (3.2)
1
lagl S 1-— ME for M S e, (33&)
eV 1
las] < 2¢72 — _j\f +1l4 55 for M2e (3.3b)

v

where v € [0,1] is given by M™! = ve™”. See e. g. [9], and also [4, p.
54].

Apart from rotations there is only one function in Sy with equality in
(3.2), namely the function

k(2)

i )24 L (3.4)

w= Mk™! ( ) :z+2(1—%)22+(1—xl4—)(3———]\57[—



There are some scattered results under additional conditions for higher
order coefficients, but a sharp upper bound for |a,| generally seems to be
located way beyond mountains of difficulties.

In the present section we shall determine the sharp upper bound for
|az2| in the family S%;, consisting of all f € Sy for which the coefficient
a3 = 0. The non-triviality we will experience in this invesigation of the
very first, presumeably simple coeflicient, will throw some light on the
impact of the two conditions |f(z)| < M and a3 = 0 on the complexity of
problems in the family of functions.

As in the old problem we shall also here use the Lowner formulas, which,
however, differ from the formulas (2.5) and (2.6) by having log M as the
upper limit instead of oo, log being the natural logarithm. We thus have

log M
az = —2/ k(r)e Tdr (3.5)
0

and

log M 2 log M
a3 =4 (/ K(T)e_"d7'> - 2/ kE(r)e ?dr . (3.6)
0 0

To simplify writing we define

log M
L = /0 w(r)e~Tdr (3.7)

and

log M
I, .= / ki(r)e *Tdr . (3.8)
0
Membership in S}, is then equivalent to the relation
41 =2I, . (3.9)

(This form is convenient, since aj = 4I7.)

The equation (3.9) produces right away a trivial upper bound for |a;|,
obtained by taking x(7) to be 1, which gives us 1 — 1/M? as the sharp
upper bound for the right-hand side of (3.9), from which we get

/ 1

In spite of the fact that this bound comes from a sharp bound of the right-
hand side of (3.9) it does not have to be sharp, the reason being that we
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may not always have the possibility of the combination of equality in (3.9)
and maximality on the right-hand side. We can immediately find a case
when the bound (3.10) is not sharp, by looking at the sharp bound (3.2)
for |az| in Sp. Since S}, C S, the sharp upper bound for |az| in S},
must be less than or equal to the bound in Sjs. Hence, if

/ 1 1
1—m>2(1—ﬁ),

which means that M < 5/3, the bound (3.10) is not sharp. This raises
two questions: a) Is the bound sharp for M > 5/3? b) How can we find
a sharp upper bound in the case M < 5/37 We shall see that the answer
to the question a) is yes:

Proposition 1.
For M > 5/3 the following sharp bound holds in S),:

/ 1
Proof:

Take first M = 2. In this case the extremal functions in Sy are in S},
as seen in (3.4), and the two |az|-bounds are equal. Hence the statement
in Proposition 1 is established for M = 5/3.

Next take M > 2. in this case

1 1
- — ). 1
L=gp <2 M) (3.11)

In order to prove sharpness we need to find a x(7), such that |2],] =
/1~ 1/M?2. For any to € [0,log M] take x(7) to be 1 for 7 € [0,%] and
—1for 7 € (to,log M]. Here we have 2I, = 1 —1/M?, regardless of the t,-
value. When ty increases from 0 to log M, the expression —2I; decreases
from 2(1 — 1/M) to —2(1 — 1/M). Since (3.11) holds, and since —21; is

a continuous function of ¢y, there are two t¢- values for which

/ 1
|2I]l: l—m,

(one is such that —2I; = /1 — 1/M?, the other one such that —2I; =

—+/1—=1/M?. This proves the existence of functions (), such that we
have equality in (3.10), and the sharpness of the bound is thus established.
This concludes the proof of Proposition 1.

The remaining case M < 5/3 is more difficult. We shall, as the main
tool, use the theorem:

o s



Theorem 2.

Let t be a fixed positive number, A\(T) be a real, piecewise continuous

function in [0,t] and
M)l <em.

Next, let K be a real number in [0, (1 — e™2*)/2]. If

/Ot M(r)dr = K

then the following sharp bound holds:

1/ T)dr| < V(K),

where V(K) is defined as follows:
For K < e~?'t we have

VK)=VEK -t ,

with equality only for the constant function

= \/RT/_t for 0< 1<t
For K > e~?'t we have
VIKy=e (v +1)—e7",
where v € [0,1] is given by

1 1
K=+ -2-) - 5€—-2t.

Equality holds for the function

Mr)=e™ for 0<7<v and=e¢ 7 for v<7<t

and no other function.

(3.12)

(3.13)

(3.14)

(3.15)

(3.15")

(3.16)

(3.17)

(3.17")

For the case t = oo (where the first subcase is empty) this theorem
goes back to Valiron and Landau [6], and was used by Landau in the
theory of univalent functions. The case presented above was established
in the paper [11], and was there used in the theory of bounded univalent

functions. See also [12].



For our purpose we choose
A7) =cosd(r)e™” and t=logM ,where M <5/3. (3.18)

We thus have e™* = 1/M .

In (3.9) we may without loss of generality assume that I, > 0 and at
the same time I; > 0. This may be seen as follows: If not, replace f by
fs, then I is replaced by e~**I; and I, by e~2**I,. By a proper choice
of ¢ both expressions are non- negative. With

k(7) = cos¥(r) + isinI(7)

we have
log M
L :/ cosd(r)e” "dr (3.19)
0
and
log M
2I, = 2/ cos 219(T)e—2"d7' =
0
log M ) . 1
=4 J Tdr - (1 - —=). .20
/0 cos” ¥(7)e T —( M2) (3.20)
Moreover

log M log M
/ sind(7)e”"dr =0, and / sin29(7)e”?"dr = 0. (3.21.)
0 0

The relation (3.9) thus takes the form (when we write J instead of

9(r)):

log M 2 log M 1 1
(/0 cos¥ - e_"d7'> = /0 cos® ¥ - e *"dr — Z(l - W) (3.22)

Now let K be the value of the integral
log M
/ cos? 927 dr.
0

Then V(K) is the sharp upper bound for the integral

log M
/ cosde” T dr.
0

The question now is: Given an M-value < 5/3. Is it possible to have
(3.9) satisfied and at the same time have the maximal value of the second
integral, i.e. is it possible to have

VEY = K - (1~ 11)

It turns out that it is convenient to deal with the second case K >

? (3.23)
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log M /M? first. In this case (3.23) takes the form

—v 1 2 _ _—2v l __l 1
[e (V+1)_M] =€ (1/+2) 4(1+—M2), (3.24)
or
_,, 1 —2u 1 1 1 )
e (u+1)—M]2—e2(u+—2-)+2(1+m)_0. (3.24")

Simple computation shows that the derivative with respect to v of the
lefthand expression in (3.24°) is

1
21/6—”(M —-ve "),
which is positive for all v € (0,log M]. Hence the lefthand side of (3.24’)
is strictly increasing in the interval (0,log M], and the equation (3.24’)
has at most one solution in this interval. The values of the lefthand side
of (3.24’) in the endpoints are:

For v =0:

1., 1 1 _ i §~_
(1—‘M‘)—Z(1“W)—(1—M)(4 4M)’

which is < 0 for all M € (1,5/3).
For v = log M:

1 M2 o1
—m((log M)? —log M + = = Z) (3.25)

Simple computation shows that there is a unique M-value My = 1.361...,
such that the expression (3.25) is negative for all M € (1, Mp) and posi-
tive for all M € (My,5/3). Keeping in mind the monotonicity property
established above we have: For any M in the interval (Mg, 5/3) the equa-
tion (3.24’) has exactly one root in the interval (0,log M). For any M in
the interval (1, M) the equation (3.24°) has no such root.

The only remaining question, as far as the interval (My,5/3) is conc-
erned, is the question about a possible «(7), such that, in addition to
(3.22) also (3.21) is satisfied. The real parts cos? and cos 29 are already
such that (3.22) is satisfied. Any change from ¢ to —9 does not violate the
validity of (3.22). In order to find a change such that (3.21) is satisfied,
we go back to Theorem 2, second case. From (3.17") with

A(T) =cosd(r)e™ "

we find



sin¥r)e”™” = tve " —e"? for 0<7<v and 0 for v <7<t
and
sin29(r)e %" =2e Ye "sind(r) for 0<7<v and 0 for v<T<t

Hence

t t
/ sin 29(7)e™2"dr = 26—"/ sind(r)e”"dr. (3.26)
0 0

Take a vy € {0,v] and let ¥ be positive in [0, o] and negative in (v, v].
By a proper choice of yg-value the ”sind-integral” is 0, and, by (3.26)
also the ”sin29- integral”. Hence (3.21) is satisfied without violation of
(3.22). We have thus proved the following:

Proposition 3.
Let My be the unique M-value in (1,5/3) for which (3.25) is 0. Then
for 1.316... = My < M < 5/3 the following sharp bound holds in S':

1
Jaz] < 20e™ (v +1) — 7], (3.27)
where v € [0,log M] is uniquely given by (3.24’).
In the remaining case 1 < M < M, we shall use the first case in
Theorem 2, and (3.23) takes the form

(vVKlogM)* = K — l(1 - —1—), (3.28)

4 M2
and hence Y
1-1
K= —— .28’
4(1 —log M) (3.28)

From Theorem 2 we know that we have equality in (3.14) if and only if

A1) =cosd(r)e” T = loé\M'
From this we get
sin 29(7)e 2" = 2 oz M sind(r)e™ ",
—27 -7

showing that in this case sin 29(r)e and sindY(7)e” " only differ by a
constant factor. This was, in the previous case the crucial point in proving
that the two equalities in (3.21) can be satisfied simultaneously. This will,
essentially in the same way, also hold in the present case. This shows that
2v/Klog M is the sharp upper bound for la;|, and we have the following

result:
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Proposition 4.
Let Mo be the unique M-value in (1,5/3) for which (3.25) is 0. Then
for 1 < M < My = 1.316... the following sharp bound holds in S;:

1—1/M?%)log M
o) < ([ L (3.29)

We put the results in the Propositions 1,3 and 4 together in one theorem:

Theorem 5.
Let A;(M) be the maximum value of |a;| in Sy Then the following

holds:
/ 1
A2(M) = 1-— W

For M > 5/3 we have
For Mo < M < 5/3, where My = 1.316... is uniquely given in (1,5/3)
by

1 M
(IogMo)2 - logMo b Z + —40’ = O,
we have X
Ap(M) =20 (v 4+ 1) — 31
where v € [0,log M| is given by
— 1., a2y 1 1 1
[e (U+1)—H] =e (U+§)—Z(1+~MZ—).

For 1 < M < My we have

alhn = [ L 2OE M,

Remarks.

a) It is a straightforward verification to prove that 42(M) is a continu-
ous function of M in the interval [1,00), the critical points being 1, Mo
and 5/3. This justifies the use of the equality signs in distinguishing the
cases above.

b) It is not difficult to carry out the investigations above for k-symmetric
functions in Sps with vanishing third coefficient. Such an investigation
is presently in progress by the Master of Science- student Muhammad
Mushtagq.

¢) The condition a; = 0 is equivalent to the condition (3.9), i. e. to
41% = 2I,. Here the number 4 could be replaced by a positive number g,
and a similar investigation as the one in the present paper could be carried
out, only with an additional discussion of which ¢-values are permitted.
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