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ABSTRACT   

A room-temperature  Kerr-Lens modelocked (KLM) Cr:ZnS laser generates <70 fs pulses duration (about eight optical 
cycles) with 5.6 nJ pulse energy and over 100 nm FWHM spectral width at 105-157 MHz repetition rates. The laser 
produces 1 W average output power at 20% optical efficiency, limited by the available Er:fiber pump. For further pulse 
energy scaling we also realized the chirped-pulse regime, with 0.8-2 ps pulse durations. The demonstrated applications 
of such mid-IR source range from extra- and intra-cavity spectroscopy to subharmonic OPO pumping. For 
environmentally-protected delivery we suggest and realize duration-preserving soliton delivery in a ZBLAN fiber. 
Further bandwidth increase is demonstrated by 2.0-2.8 µm supercontinuum generation in a chalcogenide fiber.  
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1. INTRODUCTION  
 
Femtosecond coherent light sources emitting in the mid-infrared are of particular interest for a number of applications 
like environmental sensing, medicine, metrology, material processing and telecommunications1. These sources are 
usually complex ant costly, because they are built on the basis of optical parametric amplification or difference 
frequency generation processes. The alternative approach is a mode-locked crystalline solid-state laser setup based on 
Cr2+-doped chalcogenide crystals, namely ZnSe, ZnS, CdSe, CdMnTe, CdS, etc.2-5 These crystals are nicely suitable for 
high-power femtosecond pulse generation due to their broad gain, continuous tunability over the wide wavelength range 
and good thermo-optical and thermo-mechanical properties 6-10. Until the last few years the most developed crystal for 
solid-state femtosecond mid-IR lasers was Cr:ZnSe. Passively mode-locked femtosecond Cr2+:ZnSe laser was first 
reported in 200611  and the first KLM laser in 200912,13. To date,  output power up to 300 mW12, pulse energy up to 2.3 
nJ14, pulse duration as short as 80 fs15 were demonstrated. 

Alternative crystal of Cr:ZnS received a lot of attention in the last few years. Spectroscopically both crystals are in many 
respects similar, and the main difference is power handling capability, which is better for Cr:ZnS because of higher 
thermal conductivity, higher thermal shock parameter and lower thermal lensing parameter2,16. But after the first 
demonstrations of continuous-wave Cr:ZnS laser in 2002 [12-14] the main attention was shifted to Cr:ZnSe, mostly 
because of its more reproducible growth quality combined with similar spectroscopic properties. Though Cr:ZnS is 
formally cubic, it can co-exist in several structure types, thus exhibiting natural birefringence. Subject to the availability 
of good-quality single and polycrystalline materials, the interest in Cr:ZnS raised again leading to the demonstration of 
picosecond mode-locked17 and 10 W polycrystalline continuous-wave laser18. 

Femtosecond SESAM-initiated mode-locking using Cr:ZnS crystal was obtained recently19. Pulse duration of 130 fs was 
demonstrated at the wavelength around 2400 nm with a pulse repetition rate of 180 MHz. The average output power of 
130 mW (205 mW in the chirped-pulse mode) was obtained corresponding to the pulse energy of about 0.7 nJ. It was 
shown that SESAM limits the performance of the system in terms of bandwidth, output power, and third order 
dispersion. As a next step, the Kerr-lens mode-locked Cr:ZnS laser was just realized demonstrating 69-fs pulses with the 
average output power of 550 mW20,21. At the pulse repetition rate of 145 MHz this corresponds to the output pulse 
energy of 3.8 nJ. 

 In this paper we present the further development of Kerr-lens mode-locked Cr:ZnS laser. The optimization of the cavity 
parameters allowed to obtain 1W of average output power with a maximum pulse energy of 5.6 nJ. Chirped pulse 
Cr:ZnS oscillator was demonstrated in the KLM mode for the first time showing the potential of further energy scaling. 
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2. EXPERIMENTAL SETUP 
 

The experimental setup is shown in Fig. 1. The classic astigmatically-compensated four-mirror cavity was used for the 
laser design. Cr:ZnS crystal with Cr2+ concentration of about 6⋅1018 cm-3 was grown by physical vapour transport 
technique. The active element with a thickness of 2.5 mm was mounted at Brewster angle on a copper heatsink without 
active cooling. The near-symmetrical cavity consisted of two folding concave high-reflector (HR) mirrors, a plane high-
reflector chirped mirror (CM)15, 22, and a plane output coupler (OC) with a transmission of 18% at the laser wavelength. 
The laser was pumped by the CW Er-fiber laser from IPG Photonics providing up to 5 W of polarized collimated output 
at 1.61 μm. The pump beam was focused onto the crystal by an AR-coated focusing lens (FL) with a focal length of 30 
or 40 mm, depending on the cavity length. The crystal absorbed about 80% of the incident pump power. The mode-
locking was achieved by the soft-aperture Kerr-Lens effect with a moving chirped mirror used as a starting mechanism. 
The compensation of the group-delay dispersion (GDD) was achieved by the combination of material dispersion 
(sapphire or YAG plate installed into the OC arm of the cavity) and the chirped mirror, thus making the resonator design 
especially compact and stable.  

Er:fiber
5W@1.61 mμ

CL FL  AE

CM

HR HR
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  Figure 1. Schematic of the femtosecond Cr:ZnS KLM laser. CL – collimating lens, FL-focusing lens, HR – high reflector 
mirror, AE – Cr:ZnS active element, CM – chirped mirror, DC – dispersion compensation, OC – output coupler. 

 

All measurements were performed in the open air with 40-50% relative humidity. The spectral distribution of the laser 
emission was analyzed by a Perkin-Elmer FTIR spectrometer, spectral resolution of 1 cm-1 was used in the most of the 
cases. For the measurements of the pulse duration a custom-made interferometric autocorrelator was built with a 
detection system based on a two-photon absorption in an amplified Ge photodetector. The pulse repetition rate was 
controlled by the picosecond GaAs photodetector working in two-photon absorption regime. The spatial distribution of 
the laser output was analyzed by the moving-slit beam profiler. 

 

3. RESULTS AND DISCUSSION 
3.1 Soliton regime 

Kerr-lens mode-locked laser experiments were carried out with 1.43-m cavity having a fundamental repetition rate of 
105 MHz. The maximum output power of 590 mW resulting in the pulse energy of 5.6 nJ and the minimum pulse 
duration of 74 fs were obtained with output coupler transmission of 18%. The interferometric autocorrelation trace of the 
laser pulse at maximum output power and laser beam profile are presented at Figure 2. The minimum pulse duration of 
74 fs is equal to 9 optical cycles at this wavelength and corresponds to the pulse duration of 25 fs at the wavelength of 
Ti:sapphire laser. Laser pulses were close to transform-limited with the time-bandwidth product of 0.399. The beam 
profile (Fig. 2c) has a slight ellipticity.  
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Figure 2. Interferometric autocorrelation trace of KLM Cr:ZnS laser (a), laser emission spectrum(b) and beam profile at the 

distance about 50 cm behind the output coupler (c). 

The anomalous second-order dispersion of II-VI materials at wavelengths between 2 and 3 µm allows a simple method 
of material dispersion compensation11,14,15 to be used in chromium-doped chalcogenide mode-locked lasers. But for few-
optical-cycle pulse generation management of the third-order dispersion is also critical. In the current setup both the 
material dispersion compensation and specially designed chirped mirror were used. Combination of methods allowed to 
obtain relatively flat GDD curve with total net GDD per cavity roundtrip about -450 fs2 at central wavelength (Fig. 3). 
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Figure 3. Output spectrum of a femtosecond Cr:ZnS laser (bold black), calculated round-trip GDD (solild black), intracavity 

losses due to the mirrors (dashed black). The atmospheric absorption (solid gray) is scaled to the resonator round-trip 
length and causes characteristic features on the spectrum23. Data from Ref.21. 

Elimination of the SESAM allowed shortening the pulses by about a factor of 2. Since the gain of Cr:ZnS can support 
few-optical-cycle pulses6, 15, it is important to define the factors preventing the pulses from further shortening. The 
dispersion-like fractures on the spectra presented in Fig. 3 and other figures in the article are the traces of water vapor 
intracavity molecular absorption23. The grey line in the Fig. 3 shows the intensity of these absorption lines in the spectral 
region 2.1-2.7 μm. It can be seen that water vapor absorption is one of the limiting factors for pulse shortening. Among 

 a)                                                            b)                                                     c) 
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the other limiting factors one can consider cavity mirror losses (dashed black line in the Fig. 3) and intracavity third 
order dispersion causing the net GDD (solid black line in the Fig. 3) to become positive around 2.2 µm. 

Another important aspect of the system is it power scalability. In the current setup the pulse energy was limited by the 
pulse breakup due to high third-order optical nonlinearity of the Cr:ZnS crystal (90⋅10-16 cm2/W). Increasing the output 
power over 600 mW resulted in the either double-pulsing with pulse separation of several picoseconds or harmonic 
mode-locking. At the maximum pump power of 5W the average output power reached 1W that is equal to laser optical to 
optical efficiency of 20%. The pulse repetition rate was measured to be 210 MHz, twice as high as the cavity 
fundamental frequency, corresponding to the pulse energy of 4.7 nJ. The interferometric autocorrelation trace and pulse 
optical spectrum are plotted in Figure 4.  
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Figure 4. Interferometric autocorrelation trace (a) and optical spectrum (b) of KLM Cr:ZnS laser in harmonic mode-locking 

mode at the average output power of 1 W. 

 

3.2 Chirped pulse (CPO) regime 

For further increasing of the pulse energy of mode-locked Cr2+:ZnS laser one should reduce the peak power density 
inside the active medium. That could be done by using the technique of chirped-pulse-oscillator (CPO). This technique is 
well-established in the fiber24 and Ti-sapphire lasers25,26, and has recently been demonstrated with the Cr:YAG27 and Yb-
doped thin-disk lasers28,29. For Cr:ZnSe the analytical theory30 predicts pulse energies up to 0.5 µJ31 and initial 
demonstration of CPO technique has already been performed for Cr:ZnSe as well as Cr:ZnS  lasers19. 

Practical realization of the chirped pulse regime has been performed by removing the bulk dispersion compensation 
elements from the cavity, bringing the net intracavity GDD to nearly zero. The experiments were carried out in 1-meter-
length cavity with output coupler having 4.5 % transmission. The average laser output power could be scaled up to 730 
mW that is equal to 17% slope efficiency. Despite the lack of the active cooling, the laser showed no evidence of thermal 
degradation demonstrating straight input-output curve in the whole available pump power range (Fig. 5a). The pulse 
durations are in the range of 0.8-2 ps, typical autocorrelation trace is plotted in the Fig. 5b. The spectra showed 
distinctive shape with steep edges reaching maximum width of 138 nm (Fig. 5c). Some asymmetry is due to the residual 
higher-order dispersion27. The pulse energy slightly below 5 nJ was reached.  

In the current configuration CPO oscillator has an important advantage over the SESAM-version19 that there is no energy 
leakage into the higher-order modes. Further pulse energy scaling is thus a subject of optimization of OC transmission, 
cavity length, available pump power, and active cooling. 

 a)                                                                        b)                                                        
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Figure 5. Input-output characteristics a), interferometric autocorrelation trace (b), and optical spectrum (c) of KLM Cr:ZnS 

laser in chirped pulse (CPO) regime. The noise-like features near 2390 nm originate from the atmospheric water 
absorption lines that are strongly enhanced at the spectrum edge32. 

 

4. DEMONSTRATED APPLICATIONS 
 

At this power and energy level, Cr:ZnS oscillator is now capable of number of important spectroscopic and nonlinear-
optical applications. Already at 100-mW power range, high-sensitivity spectroscopy33-35 and wavelength conversion 
further to the infrared in subharmonic GaAs OPO36 have been demonstrated. These applications will strongly benefit 
from the increased average power and mode quality. Important for applications is also the demonstrated possibility for 
environmentally-protected and duration-preserving delivery of the pulses via single-mode infrared fibers in solitonic 
regime37. Further bandwidth increase can be achieved by supercontinuum generation in step-index chalcogenide fiber 
reaching 2.0-2.8 μm range38.  
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